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Random graph coloring: Statistical physics approach
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The problem of vertex coloring in random graphs is studied using methods of statistical physics and
probability. Our analytical results are compared to those obtained by exact enumeration and Monte Carlo
simulations. We critically discuss the merits and shortcomings of the various methods, and interpret the results
obtained. We present an exact analytical expression for the two-coloring problem as well as general replica
symmetric approximated solutions for the thermodynamics of the graph coloring problernp witlors and
K-body edges.
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[. INTRODUCTION theoretical results can be systematically improved by using
replica symmetry breakingRSB) approximations, which are
Methods of statistical physics have recently been applie@xpected in such systems, although our current results do not
to a variety of complex optimization problems in a broadProvide a direct indication for a breakdown of the RS ap-
range of areas, from computational complexity2] to the ~ Proximation.

; Apart from determining merely the colorability of the
study of error correcting codé8] and cryptography4,5]. . X
G)r/aph coloring is oge of GEfhge basicyr?ongetgrrginigticallygraph’ the ground state energy also tells us what is the typical

: ) -~ “minimal fraction of unsatisfied edges when the graph is non-
polynomial (NP-complet¢ problems. The task is to assign olorable. Furthermore, the ground stétesidual entropy

one ofp colors to each node, in a randomly connected set Oéives us information about the number of different coloring

vertices, such that no edge will have the same colors agchemes that share the minimum number of unsatisfied
signed to both ends. The feasibility of finding such a solutionedges_

clearly depends on the level and nature of connectivity inthe Tnhe suggested framework covers a range of possible
graph and the number of colors. The very existence of &ariations of the original problem. However, only a limited
solution is in the class of NP-complete problefitd. An  number of them can be studied in a single paper; we there-
extension of the problem to the case of hyperedges comprisore restrict this study to regulgr=2 andp=23 color prob-
ing more than two vertices is also of practical significancelems on random graphs with two-vertex edges., with
[7]. two-body interactions in the statistical physics terminology

Recent success in the application of statistical physicén this contextregular stands for the fact that all edges con-
techniques to computational complexity problems naturallynect the same number of vertices and impose the same color
led to the belief that they may be applied to a wide range ofonstraint on the vertices they connect, and that all vertices
computational complexity tasks; among them is the grapthave the same available color set. Possible variations include
coloring problem. manyK vertex edges K-body interactions mixtures of

In this paper we map the graph coloring problem, with edges with differenK values and/or with different local con-
colors, onto the antiferromagnetjgspin Potts mode[8]; straints imposed on the colors of the vertices involved; con-
this facilitates the use of established methods of statisticadtraints on the overall frequencies of vertices of a certain
physics for gaining insight into the dependence of graph coleolor; mixtures of vertices with different available color sets;
orability on the nature and level of its connectivity, and theother probability distributions of the number of edges per
phase transitions that take place. The suggested framewovertex, etc.
comes with its own limitations; we critically discuss what  Our results, in agreement with results obtained elsewhere
can and cannot be calculated via the methods of statistic@ll1,12), seem to indicate that fqgg=3 there is a first order
mechanics. transition for the colorability as a function of the average

The statistical physics approach is based on the introduagyraph connectivity, from probability 1 to 0, at some critical
tion of a Hamiltonian or cost function, and the calculation of average connectivity. This implies that in these cases a van-
the typical free energy in the large system limit. From theishing ground state energy implies that the graph is
free energy one can obtain the typical ground state energp-colorable, while a nonzero ground state energy indicates
which in turn allows one to make predictions on the graphthat the graph is typically ngt-colorable.
colorability. A nonzero ground state energy indicates that, Contrasting results obtained from the theoretical frame-
under the given conditions, random graphs are typically notvork with numerical studies in the case p#2 expose in-
colorable. Our theoretical results are restricted to the replicherent limitations of the statistical physics based analysis.
symmetric(RS) approximation(see[9,10]), and are, for the Using a completely different approach, we also obtain an
two-color problem(which is solvable in linear timein per-  exact expression for the probability that large random graphs
fect agreement with those obtained by numerical methodsyith two-vertex edges are two-colorable, finding a second
for the three-color problem the results are only in qualitativeorder transition for the colorability as a function of the
agreement with those obtained by numerical methods. Thgraph’s average connectivity, from nonzero to zero probabil-
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ity, in agreement with the result ifL3]. This result shows oring problem on a graph is determined by the constfgint
that in general a zero ground state energy does not automatn the colors of vertices connected bya(hypepedge. For
cally imply that a graph is typically colorable. instance, one can demand that none of the catprsf the
The paper is organized as follows. In Sec. Il we define thevertices connected by an edge are the same, or that the colors
problem and introduce the notation used, while in Sec. Il wec; of the vertices connected by an edge are not all the same
introduce the statistical physics framework. Section IV intro-(note that both constraints are identical For=2). Although
duces the results obtained from the analysis as well as nuR principle one can consider scenarios where the color set
merical results obtained by exact enumeration and Montenay differ from vertex to vertex, and where the color con-
Carlo simulations. The case of two-colorability is studied instraints may differ from edge to edge, in the present paper we
Sec. V; discussion and conclusions are presented in Sec. Mestrict ourselves to the case where all vertices have the same
color set{uy, . ..,upf={1,... p} of p colors, and where
[l. GRAPH COLORING: DEFINITIONS AND NOTATION each edge imposes the same color constraint on the vertices
it connects. The actual color of a vertgis indicated byc;

In a general setup, we considezgular random graphs — _ry 31 and we denote aoloring of the entire graph
G(N, ,K,\) consisting of N, vertices, connected to each

other by(hypepedges. Eaclthypepedge connects exacthy by CE{_Cl’ Tt 'CNU}' _ _ N
distinct vertices. The connectivity is then described by the [N this context our goal is to determine the probability that
tensorDy; ...; . the elements of which are 1 if there is a & randomly generated graph with average connectivity

(hypededge connecting the vertic, - - - j}, and 0 other and a given color set and color constraints, is colorable.
it .

. / . Note that theK =2 case withp available colors is exactly
WISe. Note. thgt the total ngmt')fr of p933|b||3/per)edges " the antiferromagneti@-spin Potts mode[8], while the p
the graph is given bNpeq=( "), while the total number — _, ,qe is the antiferromagnetic Ising modste[9,10]).
of possible(hypejedges a given vertgxmay be involved in - The only randomness present in the model is the random

is given byN¢, = ( ng:ll). The overall connectivity of the graph connectivity.

graph (N, ,K,\) is described by the parametkr which

gives the average number of edges each vertex is involved Ill. REPLICA CALCULATION
in. Hence, for large graphs.e., N,—), the fraction of the
total number of edgeld, and the total number of verticés,
is typically given by We now present the statistical physics formulation of the
graph coloring problem. To map this problem onto a statis-
tical physics framework, we introduce a Hamiltonian or cost

function for given coloring§ and connectivityD:

A. General scenario

Ne _ A —-1/2

N—U—R+O(NU ). )
In a randomgraph, this is obtained by considering élk., . R
Nperg) POssibleK-tuples{j,---jy} of vertices, and by as- H(c, D)=, Dy, X0 (C), 4
signing Ox

where we have introduced the following shorthand notation
for the K-tuples to keep our notation concise:

) Ok={i1, -kt ®

In the large system limiti.e. N, —), the number of edges Furthermore,y,, (C) is 0 if the edge color constraints are
per vertex () is then Poisson distributed: K

1 with probability P=N/Ng,
Dyi i1 = . -
Uil | 0 with probability P,e=1— M Npe, -

satisfied and 1 otherwise, such tlﬁa@) counts the number

k Nperp —K of unsatisfied edges. We focus on the case where colors of

N N A
- - pelv _ ) -
P(ne—k)—( k )\ Npe 1 Noos nodes _sharmg an edge should not all be the same(c) is
v then given by
A
:Fexp(—)\), k=0,1,2 ... . (3

p
X( (€)= 21 Lrecloy

The most studied case is thatkf 2, in which one consid- re

ers conventional edge®r two-body interactions graphs K

with K=3 are also considered in other contexts, for instance, i = =

the assignment of examination rooms to clag3gsin which with Hej 6’“:1" Lclox k[ll Hey, ©
case one generally speakskohyperedgesor K-body inter-

actions. Although we will derive expressions for genekgl ~ Such that

in this paper we will limit ourselves to the analysis of ran-

p P
dom graphs witlK=2. _ 1= 1—A =1—A

Now we assume that each vertegan take a coloc; out exH ~ Bx(, (0] ;/,1_=[1 [ el ] Mzzl [eloe
of a set{ujq, ... ,,u,,-,pj} of p; colors, itscolor set A col- (7)
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whereA=(1—e #). In addition we could put constraints on N
the total fraction’sf , of edges of colou: qi)}mEE ZJ[“C‘]E?}m’ m=0,1,...n, (11
m =0 J m
N
2 e =Nf (note thatE f :1)_ (8) and their definition is enforced by the introduction of the
=11 . v corresponding Lagrange multiplieiéf?}m. Here we have in-
m

troduced shorthand notation for thetuples of replica indi-

The central quantity from which all other relevant physical ges and their corresponding colors:

guantities can be derived, is the free energy. This can b
obtained from the partition functiofwith the constraints on (Q)m=(a,| =1 m),  {ulm={pdl=1 m}
m— gy ooy 1] m— y ooy 1

f):
m
> > (m a
Z(f,D)=Tr exp{ — B; D<>KX<>K(C)) ['ucj]{lt}m_ {/1:[1 5,4”» 'Cj . (12
c K

N Note the difference in notation for the replica indices,
E ,ucj—Nfﬂ . 9 which all have to be different, and for the colofs} for
=1 which multiple occurrence of the same color is allowed.

][ &

o

) ) Since all replicas are subject to the same disorder the
The free energy per degree of freedom is then obtained fromgresponding variables, depending on just one replica index,
F(f,D)=—(1BN,)In[Z(f,D)]. Itis very hard and notvery st be equivalentindex independeitt 12 =%, q=q

2 i . potper M HMpe

useful to calculater(f,D) for any specific choice of connec-
tivity D. Therefore, we calculate the expectati@verage
value of the free energy over the ensemble of all allowe
realizations of the connectivity. The average over all tensorsheir conjugateﬁ%m, for m>1. The simplest ansatz is that
D with K nonzero elements per row ahg per columnj is "
given by

and E{Z=E]M To proceed with the calculation, one needs to
fssume a certain order parameter symmetryqi@;“ and
m

all replicam-tuples (m=2, ... n) with the same color set
{u}m are equivalent. This ansatz is called the replica sym-

metric ansatz. In RS the order parametqf;%m,a%m de-

pend only on the color multiplicitiesnMEErg‘:laﬂw ap-

Dm - A{@m

. uh dm» N qp
TrDJl_:[l 5( . > . D<>K'le) =0m, wherem={m, |u=1, ... p}). Note that for general

! : (10) positive integein there may ben-tuples of any size up to;
thereforem,, can take the values Q,1..,n under the con-

Quantities of the type Q(c)=(Q,(c))y, with Q,(c) stra@ntEﬂm#§n. To facilita_te the analytic continuatipn to
= (1M)In[Z,(c)] and Z,(c)=Tr, f(x,y), are very common nonintegem, it is now technically agvantageous to write the
in the statistical physics of disordered systems. We distindiscrete set of order parametéts;, gy} as the moments of
guish between théquenchelldisordery (the connectivityD ~ p-variable probability distributions on the interd, 1]

in our casg and the microscopiétherma) variablesx (the )

coloringc in our cas¢& Some macroscopic order parameters L "oe - m

c(x,y) (the f, in our casg may be fixed to specific values qm_qof {dmr(x)}}l[l 06)™,

and may depend on bothandx. Although we will not prove

this here, such a quantity is generally believed tosk#- R

averagingin the large system limit, i.e., obeying a probabil- =00 | {dx7()} ] (_)}M)mﬂ, (13

ity distribution P(Q,(c))=6(Q,(c) — Q(c)). The direct cal- n=1

culation of Q(c) is known as aquenchedaverage over the _

disorder, but is typically hard to carry out, and requires usingvhere ['dy---=[g{II>_,dy,}---8(2P_,y,—1). The
the replica methofl10]. The replica method makes use of the variablesx,, can be interpreted as theavity) probabilities
identity (In Z)=(lim,_o[Z"—1]/n), by calculating aver- that a vertex takes the cologse{1, ... p}, and m(x) is
ages over a product of partition function replicas. Employingtheir joint probability distribution. The constraint,y,=1
assumptions about replica symmetries and analytically conexpresses the fact that the total probability is 1. Using the

tinuing the variablen to zero, one obtains solutions which ansatz(13), solving the saddle point equations with respect
enable one to determine the state of the system. We noyy Jo and qo, and taking the limitn—0, we obtain the
present only the definitions and final expressions for the rel-
evant physical quantities as obtained by the replica calcula?
tion. For the technical details we refer to Appendix A. 17K P K

The order parameters that naturally occur in this calcula- fe(F): by 2 foM+Kgl_g2_ X% , (14)

tion are B

NU
Trpg(D) 1 6(_ >
i1=1 (IPT ik) T . . . (
(9(D))p= N =N pearing in them-uple {u}, (.e., q

uenched free energy per ed@@(?) for given valuesf:

u=1
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taken in the extremum with respect ta%',ﬂ'), where

Lttt
m(x)= 2 P(L);f 11 {dxm(x)}
L=1 I=1

’ = o = p R L-1
lef {dxdxw(x)w(x)}log(1—};1 xMxM>, exqf#)l:l;[l_ (1-%,)
x];[ 8| X, — —
2 exf) ]l (1-%,)

, K p K ~
= dxm(x,)Hog| 1—A X |
9, f kll{ k(X)) 9( #Zl kl;[l k,M) (19
From Egs.(17) and (19) we see that the normalizations
b . = 2,f,=1andZ x,=1 are automatically satisfied.
93520 P(L)f |H1 {dxm(x))} Note that for the two-color problemp&2) one can in-
N N voke an Ising spin representation for the colors, e.g., by map-
P ot . ping the color 1 onto spint1 and color 2 onto spin-1.
> exqu)H (=% ,) |- (15  Then, using the fact that,=1-x;, and definihgm=1
n=l =1 —2X,(e[—1,1]), one obtains a single one-variable prob-
ability distribution 7() for the cavitymagnetizationm) of

The internal energy and entropy per edge are then given b{ji€ vertices(spins:

X log

1+m 1+m

2 2 20

We also note that in the absence of overall color constraints

p K ;
1—A2 H Xk,#) (i.e., f_#=0), aparamagneti(_:solution of the saddle point
equationg18),(19) always exists:

- - (1),

Se: B(ue_}—e)- (16) me(x) =6\ x— (B) 1}1
Note that it is convenient to consider the energy per edge “ = = AL
(U4s), and entropy per vertgxS,=(K/\)S.]. In this way,l, Tpn(X) =8 X_( Kl) 1], (21
is just the fraction of unsatisfied edggse., Ol <1], P
while S, is the entropy per degree of freeddire., 0<S,
<log(p)]. Note, furthermore, that, is bounded from below F :E[(K)‘_K_M In(p)—ln(pK‘l—A)}
by 0 (as it should bg irrespective of the distributionr, as epmo B A '
the integrand in Eq(16) is always non-negative. The saddle
point equations are obtained by variation with respect,to exp(—B) 1
ar, andr (under the constraint that and 7 are normalizeg &P (K1 A f#_ﬁ' (22)

respectively, yielding
Finally, one should note that the expressighd)—(19) are
L valid for any distribution of the number of edges per vertex
f= P(L f dX (X P(L), although in this paper we only investigate the case
” LZO L) |1:[1{ (X)) whereP(L) is a Poisson distribution.

L
exqf”)ﬂl (1_)}"#) B. Two-body interactions, no color constraints

, (17) We now derive explicit expressions for the special cases
that we analyze in more detail later on: two-body eddeés,
=2, and no constraint on the overall color frequencﬁe@ (
=0,Yu). From Eqg.(18) we obtain the relation

X P T
1/21 exqfv)llg[l (1_;(|,V)

. /K—l K-1 1 ;’(’
w(x)=J kfz[l {dka(xk)}l;l 5(XM—A|£[1 xkyﬂ), m(X)=—m

~al 5| — J'di%(fz)g(;):f’diﬂ(@g(ﬂ)*
a8 (23
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such that the free energy per edge can be written in terms dip-dimensional histogram of a large population of siig
the p-dimensional probability distributiom(i) alone: of p-dimensional points{ii|i =1,... Np}. All results pre-
sented in this paper have been obtained uslpg 10°. The

_E _ E fixed point equation(27) can then be solved by randomly
Fe=7|917 03|, (24 Co ) - -,
B A updating(i.e., replacing one of thex;—x/ . The update of
|2 2 ii’ is carried out by, first, randomly picking a valliewith
glzf 11 {dikw(ik)}m( 1-A> [] Xk,,u): (25)  probability P(L)L/\, then randomly picking. — 1 iil’s, and
k=1 wok=1 finally using the right hand sidg®RHS) of the arguments of
L L the & function in Eq.(27) to calculate the resulting compo-
Ga=> p(L)f 1T {d;(m()a)}'n(E 11 (1-AX, ) nents offi’. This process is repeated until the histogram
L =1 w 1=1 reaches a steady state. Once this histogram is obtained, it can

(26) be used to calculate the various physical quantities in similar
fashion.
Note that, in order to reach a sufficient numerical preci-
) Lt sion in the low temperature limit for the components of the
m(X)= 2, P(L)XJ [T {dxm(x)} X, we save eithex; , if x; ,<0.5 ore; ,=1—x , if X; ,
L=t =1 >0.5. This avoids precision loss, e.g., in calculating (1

The saddle point equatior19 now becomes

L-1 —Ax ,), whenx; , is very close to 1. Similar steps are
(1-Ax,) taken to keep sufficient numerical precision for the RHS of
<IT of x,— =1 @ the saddle point equatiof27).
m " i Furthermore, it should be noted that often a very large
Ey 15 (1-Ax,) number of iterations is needédp to 1GNp) before the dis-

tribution becomes stationary. This, in combination with the
Since the main question we want to investigate is the colfinite population sizdNp=10°, and the inherent randomness
orability of the graph, we are specifically interested in thein the Monte Carlo integrations, puts a limit on the achiev-
ground state energy. We therefore take the low temperatur@Ple numerical precision of our results.

limit (i.e., B—x), where a finite contribution to the energy

only exists when +x ,=s ,=O(exp(—p)) for the same IV. RESULTS

color u for both k=1,2; i.e., when two connected vertices
are forced to have the same color. Then the integrand of E
(16) becomes to leading order,

We now turn to the results of the numerical evaluation of
%he RS expressions.
First, it should be noted that the residual entrafyy\)

p 2 per vertex(i.e., the logarithm of the number of colorings of
exp—8) > 1 x« the ground stafedoes not vanish for any finite. For the
pmiker M (1-X) two-color problem
p 2 C[1+AXexppB)]
1_AE H Xk, u S >NdC()\) = = =
=1 k=1 o(N)= N In(2)=P(ne=0\)In(2)=85,(N\)>0,
1 (30)
=————""=0(1), (28 : )
[1+exp(B)X] D). @9 where Ng(\) is the number of disconnected clusters, and

whereP(n,=0\)>0 is the fraction of completely isolated

vertices at given connectivity. For each of these clusters,

one can pick a single representative vertex and give it two

X=g1, 60, €1,82, 2 X1, X2,=O(exp — B)). differen_t colors; the color of a!l the other vertices i_n the
vEp cluster is then uniquely determined when the graph is two-

(29 colorable. In the case of a non-two-colorable cluster, there is

at least ondand possibly moneway of coloring the remain-

ing vertices such that the number of unsatisfied edges in the

cluster is minimal.

For thep-color problem

with

However, the limitB— oo is not easily taken analytically for
the fixed point equatiori27). As we show in Appendix B,
even in this limit, the extremizing distributio'n(i) is non-
trivial, and we have not found a way to obtain it analytically.

We therefore solve Eq27) numerically to obtain the equi- p-2
librium distribution 77(x) which is in turn used to obtain So(>\)>k§=30 P(ne=Kk,M)In(p—k)=8&(N\)>0, (31
F, U, andS.

The various integrations in the saddle point equations angyhere P(n,=k,\)>0 is the fraction of vertices connected
the resulting physical quantities are obtained by the Montgy k edges at given connectivity. A vertex connected t&
Carlo method. The distributiont(x) is obtained as the other vertices can at least pick betwepr k colors (and
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0.045 T T T 0.7 r
p=2 p=2
Eo 0.04 | § 086}
0.035 | os |
0.03 |
04| 4
0.025 |
03 ¢
002 | s 50
02t "
0015 | =
001 | 0.1 Spri-
0.005 | ol ™
0 . + | -0.1 : . .
0 05 1, 15 2 0 05 LI 15 2

FIG. 1. On the left: the ground state eneifgy(\) for p=2. Up toA=1 (®), Eo(A\)=0. The paramagnetic ground state eneegy,,
is always 0. On the right: the ground state entr&@g\) (full line) for p=2, compared to its lower bour§/(\) [Eqg. (30)] (dashed ling
and the paramagnetic ground state entr8gy(\) (dotted ling. Up tox=1 (O), S, and S,p, coincide.

more if some of the vertices it is connected to have the same A. Two-color graphs

colon whether the graph ip-colorable or not. In case the For the two-color problem, the results are as folldsse
graph is notp-colorable, there is at least oriend possibly Figs. 1 and 2

more choices of coloring the vertices such that the number For A<1, we find only the paramagnetic solution at al

of unsatisfied edges in the graph is minimal. temperatures and the correspondin round state ener
The ground state enerdy,(\) per edge can then be used E ()E))—O P 99 gy
0 - .

as an indicator for the colorability of the graphs. Since we For A>1, from a certain(inverse temperatureT,(\)

use_the saddle point method, there may(e/VN,) fluc- |[98 (\)] onwards the paramagnetic solution coexists with a
tuations of the internal energy per edge around the saddie P ./ . : . o .
nontrivial solution, which can be identified as the physical

point value. IfEq(A\) =0, this clearly precludes colorability, . o .
. o - one (at least in the RS approximatipby the fact that this
while for Eq(\) =0 the colorability may depend on the fluc- o, ion continues to obey inequalitg0) for all values ofz

tuali:g?:that in the absence of overall constraints on the Colotrhat we have examined, while the continuation of the para-
. . - magnetic solution violates it. We have a positive ground state
frequencies, the solutions always exhibit a complete color . . .
energyEq(A) >0, and in perfect agreement with the numeri-

symmetry, as expected. In other words, the distributi¢r) cal experiments, this predicB,(\)=0 for A\>\.=1.

is symmetric under permutations of the Componentﬁ afp The behavior of the ground state energy and entropy is
to numerical precision and the marginal distribution for presented in Fig. 1 while the phase diagram and the explicit
each of the colors is identical: distribution obtained above>1 are presented in Fig. 2.

LD From Eq.(16), we see that the internal energy is always
= )= dx m(x T (X )=m(xX), Vi positive. Furthermore, the numerical analysis indicates that
(%) fo Vl;lﬂ v = (%) =7 (0) » also the entropy and the specific he&y=duUloT

(32 =TaS/IT are always non-negative, and inequali80) is
0.6 . . : 0.01 :
T |P=2 #(z) p=2
0s 1 0.008
04
0.006
PM
0.3 |
0.004
0.2}
o1l | 0.002 H
i
. ! .
0 X 0
0 0.5 LY 15 2 0 02 0.4 06 0.8 1
x

FIG. 2. On the left: the phase diagram,T), and the transition from the paramagnetic to the nonparamagnetic RS state. The phase
transition is second order in()Z). At zero temperatureig=0 for A<1 (X) andEy>0 for A>1 (from X onward. On the right: the
stationary distributionr(x) for p=2, A=2 (>\.), 8=15. We note the peaks and nontrivial distributionxat0 andx=1, indicating that
many vertices are forceghot) to take a specific color. For<\. these peaks are absent. We also note the distinct peaksld®, 1/3, and
other rational values. The symmetry around 0.5 is specific fop=2.
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0.012
Eo p=3
0.01 }

0.008 |

0.006

0.004 |

0.002

0

4 45

FIG. 3. On the left: the ground state eneigy(\) for p=3. Up toA=5.1 (@), E;=0. The paramagnetic ground state enegy,, is
always 0. On the right: the ground state entrdgy\) (full line) for p=3, compared to its lower boung(\) (dashed ling and the
paramagnetic ground state entradByp{\) (dotted ling. Up toA=4 (O), S, andS; coincide.

always satisfied. This implies that all quantities behave as ilhave examined, while the continuation of the paramagnetic
a proper physical system, not giving any direct indicationsolution violates it.

that the RS ansatz might be inaccurate. The lower limit for colorability\ =4 as obtained with the
RS ansatz is within the numerical precision of the best
known lower limit to datd 14], which puts it alk =4.03. The
upper limit for colorabilityh=5.1 as obtained with the RS

For the three-color problem, the results are as follse®  ansatz is slightly weaker than the best known upper limit to
Figs. 3-5. date[15], which puts it at\ =5.044.

For A=4, we only find the paramagnetic solution at all The behavior of the ground state energy and entropy is
temperatures, and the corresponding ground state energyesented in Fig. 3; explicit distributions obtained for various
Eo(N)=0. \ values are presented in Fig. 4, while the phase diagram is

For 4<\=5.1, from a certain temperatuig,,(\) on-  presented in Fig. 5.
ward, the paramagnetic solution coexists with a nontrivial As we will see, the numerical experiments predict that
solution, which can be identified as the physical one by compP (\)=1 for A<A.=4.7, and thatP.(\)=0 for A\>\,
paring the free energies. The ground state en&igiy) re-  =4.7. Although the RS analysis results do not contradict the
mains 0. numerical ones, they are unable to identify=4.7 as the

For 5.1=A\, from a certain temperaturg,(A) onward, critical colorability value. This is reminiscent of the RS re-
the paramagnetic solution coexists with a nontrivial solutionsults in theK-satisfiability (-SAT) problem[1]. In our case,
with a positive ground state ener@g(\) >0, which can be however, from Eq(16), we see that the internal energy is
identified as the physical one by the fact that this solutionalways non-negative. In addition, the numerical analysis
continues to obey inequalit{1) for all values of\ that we  shows that both entropy and specific he@y=dll/JT

B. Three-color graphs

0.016 v T T T T y 045 r
7 (z T
( )0.014 s oo | #(®) oy =™
0012 7" ] 0.35 oons
0.008
0.3
0.01 Soos, 001
o008 0.25
ot o002 ] 0.2 0005
x i o A -
0.004 E ° 02 04 oe 08 1
0.1 @
0.002 | 1 0.05
0 N N A N 0 N 1 N 1 N L
0 0.2 0.4 - 0.6 0.8 1 0 0.2 04 - 0.6 0.8 1

FIG. 4. On the left: the stationary distributian(x) for p=3, A=4.5 (<\.) (and\=4.8 inse}, 8= 15. Although the solutions clearly
differ from the paramagnetic solutida single peak at=1/3), the absence of peaks neat0,1 indicates thaE,(\)=0. On the right: the
stationary distributionr(x) for p=3, A=5.5 (>\.), 8=15. In the inset we have enlarged and truncated the vertical scale, to illustrate the
continuous nature of the distribution. We note the peaks and nontrivial distributiea@andx=1, indicating that many vertices are forced
(not) to take a specific color, and thEg(\)>0.
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0.9 y y y " Then, the color of all vertices it is connected (ice., the
Tog} P=3 1 second generation, which is typically a finite number that
o7t depends on\), must have the opposite color, and the edges
involved can be removed. Now one can assign the first color
06 . . .
to all the vertices(the third generationconnected to the
oSt second generation, and the edges involved are again re-
04} moved. This process is repeated until either the whole graph
03} is colored or a contradiction is encountered. Since this pro-
0z} cess requires only a finite number of operations per edge, and
since the number of edges M.= (\/2)N,, one can deter-
0Ty f mine the two-colorability of the graph in linear time, and
o5 P T e X o 10 large system sizes are accessible. It is important to note that

a graph that contains any loop of odd length is not two-
FIG. 5. The phase diagram (T). The phase transition from a colorable, while any graph that does not contain a loop of
paramagnetic distributionr(x) to a nonparamagnetic distribution 0dd length is. We will use this observation to obtain an exact

7(X) is second order inr(X). Fromx onward the RS ground state expression for the two-colorability of random graphs in the

energy is positive. next section.
The two-colorability P.(\) as obtained by exact enu-
=ToS/9T are always non-negative, and inequaligl) is ~ Merations for system sized, =10, ...,1¢ and the theo-

always satisfied. This implies that all quantities behave as ifétical line (for N,—) are plotted in Fig. 6. We observe
a proper physical system, thus giving no direct indicationthat P;(\) decreases continuously frof,(\)=1 atA=0

that the RS ansatz is wrong. to P.(\)=0 for A\=1. These results are in full agreement
with those reported il11], although here we have studied
C. Exact enumerations much larger systems. They are also in agreement with the

To validate the results obtained analytically we carried outreSUItS obtained by the replica method, but the latter is un-
Y y able to distinguish betweeR:(N)=1 and 0<P,(N\)<1 as

extensive computer simulations using two different ap-. )
P 9 P in both cases the ground state energy is 0.

proaches. o hould hat this | lqorithm i i h
The first numerical method we use is an exact enumera- ON€ should note that this linear algorithm is specific to the

tion of all the possible colorings for a given graph. Note that,draPh-coloring problem witp=2 andK=2. In the case
in general, the number of possible colorings examinedhatp=3 and/orK=3, the colors of the next generation are

grows exponentially with the system siz&l,, i.e., not uniquely determined by the colors of the previous one.
~P(Nv)exn:cNU|n(p_l)], where P(Nv) is some po|yn0_ The same holds for th&-SAT prOblem(even WlthK:2)
mial, and where is some constant called tfatrition rate; ~ Where a clauséi.e., edge may be satisfied by either of its
see, e.g.[16] and references therein. Hence, for3, we  arguments or by both.
are fairly limited in accessible system sizése., N, For p=3 it is believed that no polynomial algorithm ex-
=(10%)], and may expect considerable finite size effects. ists to determine the-colorability of a graph, and we have
For p=2, however, the colorability of a graph can be to resort to the exploration of the possible colorings by build-
determined by the following linear algorithm: We start by ing up a search tree. Since we limit ourselves to determining
picking a vertex at random, and giving it a certain color.whether a graph is colorable or not, we are able to introduce

19

1y T
Sl

S theory
Pe(N) Pe(N) 3 ) S
" 100 e
081 08} 150 —x—
06} 06
04t 04 |
02} 02t
0 L L 0 s .
0 05 LN 15 2 3 35 4 55 6

FIG. 6. Left: the probability that a random graph is two-colorable, for system sizes frémo 10° and infinite system sizéheory). The
transition fromP.(\)>0 to P.(\)=0 is second order. Right: the probability that a random graph is three-colorable, for system sizes from
75 to 150 and infinite system siztheory). The transition fromP (\)>0 to P.(\) =0 is first order. The probabilities are obtained by exact
enumerations, averaged over’I0ns.
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0.018 v T v T r T T 0.018
Fo( Ao)ms 3 Fo( A0)016 -
0.014 | 0.014
0.012 } 0.012 |
0.0t | 0.01 |
0.008 0.008 |
0.006 0.006
0.004 | 0.004
0.002 0.002
0 M it b X ) R N 0 g X X . ,
4 42 44 486 A 4.8 5 52 54 5.6 4 42 44 4.6 A 48 5 5.2 54 5.6

FIG. 7. The ground state enery(\) as obtained with MC simulations with simulated annealingNip= 10° (left) andN, = 10* (right),
and different cooling rates, averaged over 100 runs. The lower curve is the estimate for infinitely slow cooling as obtained by a quadratic
extrapolation of the values for the three smallest values ©ftt/1/C=0.

some criteria to reduce the problem, thus avoiding enumerease. The simulations have been performed for system sizes
ating the full search tree. N,=1000 andN,=10000 and consist of the following in-

A first step in the reduction ipruning a vertex that has gredients.
more available colors than vertices it is connected to will At each temperature we perform Monte Carlo dynamics.

always be able to satisfy all edges, irrespective of their coI-Starting with a configuratioﬁ with energyE(c), we change

ors. Therefore, it will not determine the colorability of the the color of a randomly chosen to ¢’ £¢. . obtaining the
graph, and the vertex and all its edges can be pruned. This y bl U 9

pruning is to be done iterativelas the pruning of one vertex Néw configurationc” with energy E(c’). Then, if AE

with its edges may render other vertices prunghlatil all EE(E’)—E(E)so we always accept the move; otherwise
remaining vertices have at least as many edges as available accept it with probability exp{ SBAE)<1.
colors. We then gradually lower the temperatytiis is known as

A second step isarly stopping one starts coloring the simulated annealing17]). If the temperature is reduced
remaining vertices, keeping track of the remaining availablgcooling of the systemlogarithmically slowly with increas-
colors per vertex for all uncolored vertices. One can stogng system size, one is guaranteed to find the global mini-
exploring the search tree when a good coloring is foundmum c, of E(c). However, logarithmically slow cooling is
Alternatively, when the number of remaining available colorsnot feasible due to limitations in computing time. Therefore,
for a vertex becomes 0, the coloring so far will lead to awe must adopt a feasible cooling scheme. Here we have
contradiction later on, and we can abandon this branch of thgpted for a linear cooling scheme, where we incregsey
search tree altogether. One then backtracks to the poiRmall steps of fixed lengtd3=10"*. At each inverse tem-
where a coloring was still possible. perature8 we makeCN, Monte Carlo steps, and we control

All this greatly reduces the actual number of COloringSthe Coo”ng rate by Changing, and try to extrapo|ate to
that have to be examined, leaving it, however, exponential in/c—0 in order to obtain a prediction for infinitely slow
the system size, thus greatly limiting the accessible systerggoling. The values ofC that we have considered, a2
size. Furthermore, since we stop as soon as we encounterag 1 1,10,100. The values of the ground state energy as ob-
contradiction, we have no information on the minimum num-tained by linear cooling schemes serve as an upper bound for
ber of unsatisfied edgese., the ground state eneigyr the  the true ground state energy.
number of colorings that yield the minimum number of un-  The simulation results are presented in Fig. 7. We observe
satisfied edgegi.e., the residual entropyIn Fig. 6 we ob-  that the results predict thdfo(\) starts deviating signifi-
serve that the transition frofA(\) =1 to P(\) =0 becomes  cantly from 0 around\=4.6—4.7, in agreement with the ex-
increasingly sharp with increasing system size, and that thgct enumeration and earlier numerical rest). The very
curves cross ak=4.7. This is typical for a first order tran-  sjmilar values that we obtain for the ground state energies as
sition, and puts the critical connectivity for the infinite sys- gptained by the simulations for botd,=10® andN,=10*
tem ath.=4.7. In this limit we expec(\) to go discon- jndicate that the finite size effects for these sizes of systems,
tinuously from 1 to O, in accordance with the resultsif noticeable, fall well within the limitations of the achiev-
presented if11,12. able numerical precision due to the linear cooling scheme.
The results show thdEy(\) as predicted by the RS approxi-
mation is no longer in agreement with the numerical evi-
dence, thus giving an indirect indication that one may have

Since exact enumerations f@=3 are limited to rela- to consider a more complicated ansatz for the replica sym-
tively small system sizes, we have also performed Montanetries. A similar underestimation of the ground state energy
Carlo simulations with simulated annealing for tpe=3  in the RS approximation has been observed in KRSAT

D. Monte Carlo simulations
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4- . ] As long as the typical loop size is finiteompared td\,),
Kﬁ[ ,/7' Z A the correlations between the different k®21)-tuples is
O(N, 2) (at least two new edges have to be presemtd are
therefore negligible. Hence, the probability that there are no
FIG. 8. Loops of odd lengths 3,5,7. ., all of which have a  three-loops in the graph is given by
finite probability of occurring in large randomly generated graphs
for any finite \. \3

Nv\
° 2%3

P(=3)=[1-P(3)] J:exp( -

problem[1]. In that model, however, the inconsistency of the ' (36)

RS result was signaled by dnnphysical negative ground

state energy. This problem was partially solved by consider- o _

ing a more complicated ansatz for the replica symmétey, N_ow we turn to the probability that there are no f|ve-I00p_s,
a one-step replica symmetry breaking ansatz, JR®Bis given that there are no three-loops. We can randomly pick
therefore plausible that such a 1RSB calculation would alsdive vertices in () ways. The probability that a given set of
improve on the prediction of the value, at which the five vertices forms a loojcounting all the distinct possible
ground state energy ceases to b@®., move it closer to the orderings 4!/2), while there are no shorighree)loops in
true value\ ;=4.7). Such a calculatiofand also subsequent the group(five internal edges have to be exclugleid given
steps in Parisi's scheme for RBB easy to formulate, but its by

evaluation is numerically rather involved. This analysis is

beyond the scope of the current paper, but will be the subject

. 41 41
of a forthcoming study21]. P(5|-3)= ?ngﬁe: 77>2=7?(5). (37)

V. TWO-COLOR PROBLEM: EXACT ANALYSIS
Therefore, the probability that there are no five-loops in the

We will now derive an exact expression for the two- graph is given by

colorability of random graphs, in the infinite graph size limit,
for A €[0,1]. As we have seen, the replica analysis correctly

finds Eq(N) =0, but is unable to predict the nontrivial be- (Nv\ NS

havior of P,(\) as observed in the exact enumerations. We P(=5)=[1-P(5)] s JZGXD( - 2><5)' (39)

do this by identifying local configurations that give rise to

noncolorable clusters, and by calculating the probabilities of

their occurrence. One should notice that the noncolorablgVe can repeat this procedure for any odd loop length 2

local configurations are loops of odd lengtee Fig. 8 We  +1,k=1,2,3 ... . The number of internal edges to exclude
start from the probability distribution for the number of is given by (&+ 1)(2k+2)/2, while the number of distinct
edges of a given verteR(L),L=0, ... o, which is a Pois-  orderings of the vertices in a closed loop is given by (2

son distribution. We recall from E@2) that the probabilites +1)1/[2(2k+1)]. Hence, we obtain
of a or no two-edge between two given vertices are given by

A A A P(=2k+1|-3,...~2k—1)
Pe= =—, Pre=1—Pe=1——. 33
€ Npe/v Nv ne € Nv ( ) 27)(_'2k+ 1)
. )\2k+l
The probability of no(denoted by the symbeot) odd loops :ex;{ _ (39)
in the graph is given by 2(2k+1))°

P(=8757779,..) The probability of no odd loops of any lengthe. the prob-
=P(=3)P(=5|-3)P(~7|-3-5) ability that the graph is colorablés therefore

X P(~9|-3-5-7) ... . (34)
* )\2k+1

We first evaluate the probability that three randomly chosen PC:kHl P(=2k+ 1):exp< ) k; 2k+1
vertices form a loop of length 3. We randomly pick three

. . . - 14
vertices, which can be done m'é() ways. The probability ;{ 1 ) ( —n |t ;{)\
’ =exp — s[arctantin) —\]|=| — =]
that for a given set of three vertices each is connected with ex 2[arc anith) —AJ 1+\ ex 2
the other two is given by (40)
)\3
7?(3)=73§=—3 (35 After completing this work, we found that a simil&amore
Ny general expression had already been obtainé8] in the
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graph colorability. Future studies inclug® refining the cur-
rent analysis by extending it to the case of one-step RBB;
investigating graphs with mixed two- and three-color verti-
ces; this case has been studied numericallylify but is
difficult to analyze due to the different nature of the two
Sanalyses; andc) studying the properties of random graphs
with various restrictions. These research activities are cur-
rently under way.

FIG. 9. The smallest elementary noncolorable configuration
(complete graphs or cliqugsor p=3 (left), p=4 (right), both of
which have a vanishingly small occurrence probability in large ran
domly generated graphs for any finite

context of random satisfiability problems. From Fig. 6, we ACKNOWLEDGMENTS
see that this result is in perfect agreement with that obtained

system size. This point moves to the righnhd approaches
A=1, the percolation threshold for this type of gra9])
with increasing system size. Furthermore, since fex)\0
<1 the probability to have an odd loop 7 odd)<1, the
ground state energl, per edge is then typically 0, as the
probability to have a finitde is exponentially small ifN,, :

by The Royal Society and EPSRC-GR/N00562 is acknowl-
edged.

APPENDIX A: TECHNICAL DETAILS OF THE REPLICA
CALCULATION

We now present the technical details of the replica calcu-
lation. We calculate the average of tm¢h power of the
£artition sum:

P(U=Ey>0)=[P(odd)|NvFo~0. (41)

This observation is in perfect agreement with our result
from the Monte Carlo simulationésee Fig. 7, and is also
confirmed by our replica analysis.

Unfortunately, forp=3 the basic local configurations n
(i.e., those including a finite number of vertiggkat lead to Z(f, D)= H Trex _ﬂz Doy x2 ()
noncolorability cannot be enumerated so easily. Furthermore, ' a=1| ca Ox Okt 0k

each of the basic noncolorable local configurations has a

vanishingly small occurrence probabilitfFig. 9). It is their N
collective probability (including very large configurations <[] s Z mea=Nf, | . (A1)
that may consist of a finite fraction of the graphat sud- # =1

denly becomes 1 at the critical giving rise to the observed
first order transition from colorable to noncolorable graphs; a
similar fact in the context of random satisfiability problems The constraints on thg, are enforced by the introduction of
was already noted ifiL8]. the Lagrange multiplierd?, such that the average of the
replicated partition sum becomes
VI. CONCLUSIONS

We analyzed the colorability of random graphs for finite
average connectivity, an important NP-complete problem. P (gfe
The statlstl_cal physics pasgd 'anaIyS|s prowdes typical results <Zn>:f 1:[ 1':[ [ﬁrexp(_ Nfﬂfi)]
in the infinite system size limit, complementing results pub- a=1 p=1

lished in the computational complexity literature. n p N
The results obtained are in qualitative agreement with T
: , : : X Trex f
those reported in the literature as well as with numerical aﬂl { za P(“Zl = puhkte? ]

results we obtained from exact enumeration and Monte Carlo
based solutions. n R
One apparent discrepancy, in the case of two-color ><< 11 exp( > D<>KX<>K(Ca))> . (A2)
graphs, has been investigated using a probabilistic analysis a=1 Ok D
that provided exact results for the probability of colorable
random graphs in the case of two colors. The analysis also
explains the failure of the statistical physics based analysis tdhe average over all tensof® with K (taken to be two for
detect uncolorability when this comes as a result of only anow) nonzero elements per row ahgl per columnj is given
finite number of unsatisfiable edges, since such an analysiyy Eq. (10), where the Kronecker delta functions can be
can identify only an extensive number of such edges. expressed a8(x,y)=¢(dZ/27i)Z*Y~1. We now proceed
The current analysis is the first step in the investigation ofwith the calculation of7:
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N, dZ
T=Tr93g_l_j [JZG“Z """ 3P0 l]l_[ [ exl— 8Dy, xp), (€3]

=1 27 1 k a-1
Nv dZy (41 D0 T s
= ¢ [[  —z 5" T T, 121,011 exd —BDy, xo, (€7)]
=1 { 2 Oc |0 Okan K
t dz; (Lj+1) . ~a
= j@ | _zj exp X In| 1+[Z]y, I1 exd —Bx, (c™)]
1= 27i Ok a=1
192 e : G
= 35 — 7" e X (20, 11 extt— B, (¢9)] (A3)
=1 | 2i Ok a=1
N | dz " P
= 3€H [_lzjwnlexp(E (21,11 {1—2 A[Mc?]QKD
1=1 | 27i Ok a=1 =1 j
3511 z 4D xp( DONCISLOEPIDY [Z[uc.]§2>}m]<>K), (Ad)
2’7T| m=0 <a>m {utm <>K ! m

where we have used the shorthand notafit®). Step(A3) is justified, because after integration over Ejeonly those terms

in the expansion of the exponential in which eathoccurs exactyl times will survive, and it was showi20] that in the
thermodynamic limit N,—) in the expansion of the logarithm all higher order terms are negligible compared to the first
order term. In ste§A4), we have made the choi¢@) for X?)K

We have thaEOK[x]()K:(EjN:"lxj)K/K!, in the thermodynamic limit, such that

n

7 3511{ ‘””]exp(iE EISLOEDY
27'r|

K! m=0 (@)m {mtm

N, K
2 Zilue ]iiﬁ“;l ) : (A5)

In order to factorize the whole expression in & we introduce the order parameters
N
(Am , (@)m
q{"’“}m_jgo ZJ[Mcj]{ﬂ}m' (A6)
by the introduction of the corresponding Lagrange muItiplﬁéﬁ%m:
m

~(a) (a)
n dg¥mdg(® (a; 5™ N,
it {M}m {hm
= I 11 [l | ———— p( —gmagm + (—a)m—"—| 1 ] x;, (A7)
j=1

m=0 (a)m {s}m 21i K1

where

2qi =0 (a)m {rim m=0 (

L.
_ 594w+ S S @]~ L[S @ (@ |
Xj—§ Z €X Z 2 2 E q{,u}[ Cj]{,u}m _: E g 2 q{’u}[ Cj]{,u}m . (A8)
]. m
Following similar steps we obtain for the denominator
daodqo qK (qO
N—J[ o — Qoo+ o Kl +NE P(L)In .
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The average of the replicated partition function hence reads

-2 1L | B i

2i

) (a)
" dog®mdg(®m (amX
« H H H {f’“}m {M}m 4 ~(@)m <a>m+(_A)m {:U’}m

—qi%mq
M=0 {ay {4} 2 {dm tdm Kl
N, n n Li
I 1T e 3 it [ {22 = apety) ] @10
= = y7 = a

which can be evaluated using the saddle point method for the integration varﬁ%blé%a andq<a>m In order to proceed

with the calculation, we must make an assumption about the symmetry between repllcas and we use the replica symmetric
ansatz(13) for the terms in Eq(A10) that involve the order parameters:

n

3 S S afratn-ado | (@idke0r0} S 3 3 T (-x,

m=0 (a)m {#}m =0 (@)m {#tm »

= g0 f {dxdXmr(X) 70} > ) IT (—x,%,)™
m=0 M

= oo f (s (X) 7 (0L S ( ) ~ > XX )
m M

m=0
=qoaof{d>?d§w(>2)%(§)}(1—2 xMx#) , (A11)
"

(aym* 9 "

E ( A)mz {E} Klm =... Of H {kaqu(Xk)}(l AE H Xk,u) , (Alz)
Mim H
n b e D p m
I LN TSI DIl | REESLY |
m=0 (ayy, {utym '~ ® m=0 (a)y, {uhm 1= =1 ]

=0 f ’{d“i%&)}mE: E (E H( umx )

{M}m

=0o I{di%(i)}Z > Ll:[l ( _% Mc?t’;(#)l

m=0 (@)m
=-'-=aof’{d§%(§)}l—[ (1—2 ,U«caﬁﬂ), (A13)
a=1 o J

where (E)(Em!/HMmM!) are multi(p)-nomial and (;,)[=n!/m!(n—m)!] binomial coefficients. Hence, we have

056120-13



J. van MOURIK AND D. SAAD

1
ot

Il

n
[ Trea exp( > T‘M,uca> }
a=1 J M

aLj ’ Lj n P

0 R A R R

= L'f H {dX|’7T|(X|”u)}H [Trcaex 2: f'u,uca
I =1 a=1 J =1

..)'—j

j ~
X 1_2 ,LLCaX|”u)
=1 "
al(;j ) b R A R P N L
=0T [T {dxm(x ”)}(;1 exﬂfﬂ)lzl
(1 x,,M)) , (A14)

to obtain the following expression for the averaged repli-

cated partition sum:

p

1 - A
<Zn>:NeXt{?(§],q,7},w}eXp{ _anE f,uf/.L_quOZl
n=1

K

E,12+N E P(L)

AL
)| In| —

+1In(Z3.)
(A15)

where

> x

"

Ilzf,{did;w(i)%(;)}(l—

, K K n
Zzzf I1 {dikwk(ik)}(l_Az I1 Xk,,u) ,
k=1 m k=1
L n

1:[ (1- le)

(A16)

! - R A R P
Ty=| [] {dX|7T|(X|)}( > e
I=1 pn=1

We now solve the saddle point equations with respec&oto
andqp, and note that the structure of they(qo)-dependent
part of the denominator is exactly the same with=7,
=1, to obtain

[N K =Dt . N,
Qo= I—z Jodo= T
- N T W) g N
Q=7 I N NK=1)! Kl K,
(A17)

whereN =%, P(L)L, such that all terms not depending on
theZ; or f, in the numerator and denominator cancel:
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o Y
<Z”>zex;{ NU( —-n Z f ., —NIn(Zy)+ RIn(IZ)
u=1

(A18)

+; P(L)In(Z3|_)> ,

taken in the extremum foff,7,7}. So far we have per-
formed all calculations for general positive integeimaking
lim,_o[(£Z"—=1)/n], and multiplying the result byX/N,X\,
we obtain the replica symmetric free energy per etgg.

APPENDIX B: LOW TEMPERATURE LIMIT

We will now show that even in the limj— <« the distri-
bution 77()?) remains nontrivial. In order to demonstrate this,
we concentrate on the fixed point equati@T). Using two
explicit examples, we show how contributions 1) for
extremal values of the argumerfise., 1-x,=¢,=O(exp
(—B), x,=0(exp(=p))|v+u] may generate contributions
to () with finite argument values[ie., 1-x,
=0(1),V ], and vice versa.

(1) First, we assume that there is a finite probability den-
sity m(x) that 1-x,=e,=O(exp(-f)), such thatx,
= O(exp(-B))| v+ u. Suppose now thgi=3, and consider
the term in Eq(27) with L—1=3. The following combina-

tion of )2(’3 (€=1,2,3) then has a finite probability density:
1-X11=€11, 1-X0=€22, 1-X35=¢33,
&= 0(exp(— B)) O(exp(—B)),

X(fy,,: V?‘é,bb,

(B1)

and, to leading order, generates a contribution to the LHS of
Eq. (27) with X:

exp—B)te,,
EV [exq_ﬁ)_*—sv,v]

1-x,=1-

w

=0(1),

mu=1273, (B2)

i.e., with finite argument values.

(2) Second, we assume that there is a finite probability
density m(x) that 1-x,=e<1, such thak,=O(e)|v+ u.
Suppose now thagb=2, and consider the term in EQ7)

with L—1=3. The following combination ofﬁe’s (€
=1,2,3) has then a finite probability density:

€1121=0(e),
v=1,2

1-X11=¢e11, 1-X1=€34,

X3,=0(1), (B3)

and, to leading order, generates a contribution to the LHS of
Eq. (27) with x:

€11821
€11821T 1= X3

=0(&?), (B4)
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1—X3, ) the limit B—o) we cannot explicitly keep track of the pro-
E11691F 1—Xap (&%), liferation of distributions to different values &f and have to
T ’ resort to a numerical analysis. For each valua pfve have
i.e., with more extreme values of the argumedr@Xe?) in-  to check whether in the limjB— < a finite probability den-
stead ofO(¢)]. sity (x) is generated for extremal valuesfi.e., 1-x,,
Hence, we have shown that extreme values will generate- O(exp(—8))]. If this is the case, the internal energiywill
less extreme values and vice versa. Since the RHS of Edpe positive, and the probability that the graph is colorable
(27) contains terms with all values &f, obviously(even in  must be 0.
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