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Random graph coloring: Statistical physics approach
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~Received 18 July 2002; published 21 November 2002!

The problem of vertex coloring in random graphs is studied using methods of statistical physics and
probability. Our analytical results are compared to those obtained by exact enumeration and Monte Carlo
simulations. We critically discuss the merits and shortcomings of the various methods, and interpret the results
obtained. We present an exact analytical expression for the two-coloring problem as well as general replica
symmetric approximated solutions for the thermodynamics of the graph coloring problem withp colors and
K-body edges.
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I. INTRODUCTION

Methods of statistical physics have recently been app
to a variety of complex optimization problems in a bro
range of areas, from computational complexity@1,2# to the
study of error correcting codes@3# and cryptography@4,5#.

Graph coloring is one of the basic nondeterministica
polynomial ~NP-complete! problems. The task is to assig
one ofp colors to each node, in a randomly connected se
vertices, such that no edge will have the same colors
signed to both ends. The feasibility of finding such a solut
clearly depends on the level and nature of connectivity in
graph and the number of colors. The very existence o
solution is in the class of NP-complete problems@6#. An
extension of the problem to the case of hyperedges com
ing more than two vertices is also of practical significan
@7#.

Recent success in the application of statistical phys
techniques to computational complexity problems natura
led to the belief that they may be applied to a wide range
computational complexity tasks; among them is the gra
coloring problem.

In this paper we map the graph coloring problem, withp
colors, onto the antiferromagneticp-spin Potts model@8#;
this facilitates the use of established methods of statist
physics for gaining insight into the dependence of graph c
orability on the nature and level of its connectivity, and t
phase transitions that take place. The suggested frame
comes with its own limitations; we critically discuss wh
can and cannot be calculated via the methods of statis
mechanics.

The statistical physics approach is based on the introd
tion of a Hamiltonian or cost function, and the calculation
the typical free energy in the large system limit. From t
free energy one can obtain the typical ground state ene
which in turn allows one to make predictions on the gra
colorability. A nonzero ground state energy indicates th
under the given conditions, random graphs are typically
colorable. Our theoretical results are restricted to the rep
symmetric~RS! approximation~see@9,10#!, and are, for the
two-color problem~which is solvable in linear time! in per-
fect agreement with those obtained by numerical metho
for the three-color problem the results are only in qualitat
agreement with those obtained by numerical methods.
1063-651X/2002/66~5!/056120~15!/$20.00 66 0561
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theoretical results can be systematically improved by us
replica symmetry breaking~RSB! approximations, which are
expected in such systems, although our current results do
provide a direct indication for a breakdown of the RS a
proximation.

Apart from determining merely the colorability of th
graph, the ground state energy also tells us what is the typ
minimal fraction of unsatisfied edges when the graph is n
colorable. Furthermore, the ground state~residual! entropy
gives us information about the number of different colori
schemes that share the minimum number of unsatis
edges.

The suggested framework covers a range of poss
variations of the original problem. However, only a limite
number of them can be studied in a single paper; we th
fore restrict this study to regularp52 andp53 color prob-
lems on random graphs with two-vertex edges~i.e., with
two-body interactions in the statistical physics terminolog!.
In this context,regular stands for the fact that all edges co
nect the same number of vertices and impose the same c
constraint on the vertices they connect, and that all verti
have the same available color set. Possible variations inc
many-K vertex edges (K-body interactions!; mixtures of
edges with differentK values and/or with different local con
straints imposed on the colors of the vertices involved; c
straints on the overall frequencies of vertices of a cert
color; mixtures of vertices with different available color se
other probability distributions of the number of edges p
vertex, etc.

Our results, in agreement with results obtained elsewh
@11,12#, seem to indicate that forp>3 there is a first order
transition for the colorability as a function of the avera
graph connectivity, from probability 1 to 0, at some critic
average connectivity. This implies that in these cases a v
ishing ground state energy implies that the graph
p-colorable, while a nonzero ground state energy indica
that the graph is typically notp-colorable.

Contrasting results obtained from the theoretical fram
work with numerical studies in the case ofp52 expose in-
herent limitations of the statistical physics based analy
Using a completely different approach, we also obtain
exact expression for the probability that large random gra
with two-vertex edges are two-colorable, finding a seco
order transition for the colorability as a function of th
graph’s average connectivity, from nonzero to zero proba
©2002 The American Physical Society20-1
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ity, in agreement with the result in@13#. This result shows
that in general a zero ground state energy does not autom
cally imply that a graph is typically colorable.

The paper is organized as follows. In Sec. II we define
problem and introduce the notation used, while in Sec. III
introduce the statistical physics framework. Section IV int
duces the results obtained from the analysis as well as
merical results obtained by exact enumeration and Mo
Carlo simulations. The case of two-colorability is studied
Sec. V; discussion and conclusions are presented in Sec

II. GRAPH COLORING: DEFINITIONS AND NOTATION

In a general setup, we considerregular random graphs
G(Nv ,K,l) consisting of Nv vertices, connected to eac
other by~hyper!edges. Each~hyper!edge connects exactlyK
distinct vertices. The connectivity is then described by
tensorD$ j 1••• j K% , the elements of which are 1 if there is

~hyper!edge connecting the vertices$ j 1••• j K%, and 0 other-
wise. Note that the total number of possible~hyper!edges in
the graph is given byNpe/g5( K

Nv ), while the total number
of possible~hyper!edges a given vertexj may be involved in

is given byNpe/v5( K21
Nv21 ). The overall connectivity of the

graphG(Nv ,K,l) is described by the parameterl, which
gives the average number of edges each vertex is invo
in. Hence, for large graphs~i.e., Nv→`), the fraction of the
total number of edgesNe and the total number of verticesNv
is typically given by

Ne

Nv
5

l

K
1O~Nv

21/2!. ~1!

In a randomgraph, this is obtained by considering all~i.e.,
Npe/g) possibleK-tuples $ j 1••• j K% of vertices, and by as
signing

D$ j 1••• j K%5H 1 with probability Pe5l/Npe/v

0 with probability Pne512l/Npe/v .
~2!

In the large system limit~i.e. Nv→`), the number of edges
per vertex (ne) is then Poisson distributed:

P~ne5k!5S Npe/v

k D S l

Npe/v
D kS 12

l

Npe/v
D Npe/v2k

.
lk

k!
exp~2l!, k50,1,2, . . . ,̀ . ~3!

The most studied case is that ofK52, in which one consid-
ers conventional edges~or two-body interactions!; graphs
with K>3 are also considered in other contexts, for instan
the assignment of examination rooms to classes@7#, in which
case one generally speaks ofK hyperedges~or K-body inter-
actions!. Although we will derive expressions for generalK,
in this paper we will limit ourselves to the analysis of ra
dom graphs withK52.

Now we assume that each vertexj can take a colorcj out
of a set$m j ,1 , . . . ,m j ,pj

% of pj colors, itscolor set. A col-
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oring problem on a graph is determined by the constrain~s!
on the colors of vertices connected by a~n! ~hyper!edge. For
instance, one can demand that none of the colorscj of the
vertices connected by an edge are the same, or that the c
cj of the vertices connected by an edge are not all the s
~note that both constraints are identical forK52). Although
in principle one can consider scenarios where the color
may differ from vertex to vertex, and where the color co
straints may differ from edge to edge, in the present paper
restrict ourselves to the case where all vertices have the s
color set$m1 , . . . ,mp%[$1, . . . ,p% of p colors, and where
each edge imposes the same color constraint on the ver
it connects. The actual color of a vertexj is indicated bycj
P$1, . . . ,p%, and we denote acoloring of the entire graph
by cW[$c1 , . . . ,cNv

%.
In this context our goal is to determine the probability th

a randomly generated graph with average connectivityl,
and a given color set and color constraints, is colorable.

Note that theK52 case withp available colors is exactly
the antiferromagneticp-spin Potts model@8#, while the p
52 case is the antiferromagnetic Ising model~see@9,10#!.
The only randomness present in the model is the rand
graph connectivity.

III. REPLICA CALCULATION

A. General scenario

We now present the statistical physics formulation of t
graph coloring problem. To map this problem onto a sta
tical physics framework, we introduce a Hamiltonian or co
function for given coloringcW and connectivityD:

H~cW ,D![(̂
&K

D^&K
x^&K

~cW !, ~4!

where we have introduced the following shorthand notat
for the K-tuples to keep our notation concise:

^&K[$ j 1 , . . . ,j K%. ~5!

Furthermore,x^&K
(cW ) is 0 if the edge color constraints ar

satisfied and 1 otherwise, such thatH(cW ) counts the number
of unsatisfied edges. We focus on the case where color
nodes sharing an edge should not all be the same;x^&K

(cW ) is
then given by

x^&K
~cW !5 (

m51

p

@mc#^&K

with mcj
[dm,cj

, @mc#^&K
[)

k51

K

mcj k
, ~6!

such that

exp@2bx^&K
~cW !#5 )

m51

p

@12D@mc#^&K
#512D (

m51

p

@mc#^&K
,

~7!
0-2
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whereD[(12e2b). In addition we could put constraints o
the total fraction’sf m of edges of colorm:

(
j 51

N

mcj
5N fm , S note that(

m
f m51D . ~8!

The central quantity from which all other relevant physic
quantities can be derived, is the free energy. This can
obtained from the partition function~with the constraints on
fW):

Z~ fW ,D!5Tr
cW
expS 2b(̂

&K

D^&K
x^&K

~cW ! D
3)

m
dS (

j 51

N

mcj
2N fmD . ~9!

The free energy per degree of freedom is then obtained f
F( fW ,D)52(1/bNv)ln@Z( fW ,D)#. It is very hard and not very
useful to calculateF( fW ,D) for any specific choice of connec
tivity D. Therefore, we calculate the expectation~average!
value of the free energy over the ensemble of all allow
realizations of the connectivity. The average over all tens
D with K nonzero elements per row andL j per columnj is
given by

^g~D!&D[

Tr D g~D! )
j 151

Nv

dS (
^ j 2 , . . . ,j K&

D^&K
,L j 1D

Tr D )
j 151

Nv

dS (
^ j 2 , . . . ,j K&

D^&K
,L j 1D

[
T
N .

~10!

Quantities of the typeQ(c)5^Qy(c)&y , with Qy(c)
5(1/M )ln@Zy(c)# andZy(c)[Trx f (x,y), are very common
in the statistical physics of disordered systems. We dis
guish between the~quenched! disordery ~the connectivityD
in our case! and the microscopic~thermal! variablesx ~the
coloring cW in our case!. Some macroscopic order paramete
c(x,y) ~the f m in our case! may be fixed to specific value
and may depend on bothy andx. Although we will not prove
this here, such a quantity is generally believed to beself-
averagingin the large system limit, i.e., obeying a probab
ity distribution P„Qy(c)…5d„Qy(c)2Q(c)…. The direct cal-
culation ofQ(c) is known as aquenchedaverage over the
disorder, but is typically hard to carry out, and requires us
the replica method@10#. The replica method makes use of th
identity ^ ln Z&5^ limn→0@Z n21#/n&, by calculating aver-
ages over a product of partition function replicas. Employ
assumptions about replica symmetries and analytically c
tinuing the variablen to zero, one obtains solutions whic
enable one to determine the state of the system. We
present only the definitions and final expressions for the
evant physical quantities as obtained by the replica calc
tion. For the technical details we refer to Appendix A.

The order parameters that naturally occur in this calcu
tion are
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q$m%m

^a&m[(
j 50

N

Zj@mcj
#$m%m

^a&m , m50,1, . . . ,n, ~11!

and their definition is enforced by the introduction of th
corresponding Lagrange multipliersq̂$m%m

^a&m . Here we have in-

troduced shorthand notation for them-tuples of replica indi-
ces and their corresponding colors:

^a&m[^a,u,51, . . . ,m&, $m%m[$m,u,51, . . . ,m%,

@mcj
#$m%m

^a&m[ )
,51

m

dm, ,c
j

a, . ~12!

Note the difference in notation for the replica indices^•&,
which all have to be different, and for the colors$•% for
which multiple occurrence of the same color is allowed.

Since all replicas are subject to the same disorder
corresponding variables, depending on just one replica ind
must be equivalent~index independent!: f̂ m

a 5 f̂ m , qm
a 5qm ,

and q̂m
a 5q̂m . To proceed with the calculation, one needs

assume a certain order parameter symmetry forq$m%m

^a&m and

their conjugatesq̂$m%m

^a&m , for m.1. The simplest ansatz is tha

all replica m-tuples (m52, . . . ,n) with the same color se
$m%m are equivalent. This ansatz is called the replica sy
metric ansatz. In RS the order parametersq$m%m

^a&m ,q̂$m%m

^a&m de-

pend only on the color multiplicitiesmm[(,51
m dm,m,

ap-

pearing in them-tuple $m%m ~i.e., q$m%m

^a&m5qmW , and q̂$m%m

^a&m

5q̂mW , wheremW 5$mmum51, . . . ,p%). Note that for general
positive integern there may bem-tuples of any size up ton;
thereforemm can take the values 0,1, . . . ,n under the con-
straint (mmm<n. To facilitate the analytic continuation to
nonintegern, it is now technically advantageous to write th
discrete set of order parameters$qmW ,q̂mW % as the moments o
p-variable probability distributions on the interval@0,1#p:

qmW 5q0E 8
$dxWp~xW !% )

m51

p

~xm!mm,

q̂mW 5q̂0E 8
$dx̂W p̂~ x̂W !% )

m51

p

~2 x̂m!mm, ~13!

where *8dyW•••[*0
1$)m51

p dym%•••d((m51
p ym21). The

variablesxm can be interpreted as the~cavity! probabilities
that a vertex takes the colorsmP$1, . . . ,p%, and p(xW ) is
their joint probability distribution. The constraint(mym51
expresses the fact that the total probability is 1. Using
ansatz~13!, solving the saddle point equations with respe
to q̂0 and q0, and taking the limitn→0, we obtain the
quenched free energy per edgeFe( fW) for given valuesfW :

Fe~ fW !5
1

b FK

l (
m51

p

f m f̂ m1KG12G22
K

l
G3G , ~14!
0-3
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taken in the extremum with respect to (f̂W ,p̂,p), where

G1[E 8
$dxWdx̂Wp~xW !p̂~ x̂W !% logS 12 (

m51

p

xmx̂mD ,

G2[E 8
)
k51

K

$dxW kp~xW k!% logS 12D (
m51

p

)
k51

K

xk,mD ,

G3[ (
L50

P~L !E 8
)
l 51

L

$dx̂W lp̂~ x̂W l !%

3 logS (
m51

p

exp~ f̂ m!)
l 51

L

~12 x̂l ,m!D . ~15!

The internal energy and entropy per edge are then given

Ue5
]bFe

]b
5E 8

)
k51

K

$dxW kp~xW k!%

exp~2b! (
m51

p

)
k51

K

xk,m

S 12D (
m51

p

)
k51

K

xk,mD ,

Se5b~Ue2Fe!. ~16!

Note that it is convenient to consider the energy per e
(Ue), and entropy per vertex@Sv[(K/l)Se#. In this way,Ue
is just the fraction of unsatisfied edges@i.e., 0<Ue<1],
while Sv is the entropy per degree of freedom@i.e., 0<Sv
< log(p)]. Note, furthermore, thatUe is bounded from below
by 0 ~as it should be!, irrespective of the distributionp, as
the integrand in Eq.~16! is always non-negative. The sadd

point equations are obtained by variation with respect tof̂W ,
p, andp̂ ~under the constraint thatp andp̂ are normalized!
respectively, yielding

f m5 (
L50

P~L !E 8
)
l 51

L

$dx̂W lp̂~ x̂W c!%

3

exp~ f̂ m!)
l 51

L

~12 x̂l ,m!

(
n51

p

exp~ f̂ n!)
l 51

L

~12 x̂l ,n!

, ~17!

p̂~ x̂W !5E 8
)
k51

K21

$dxW kp~xW k!%)
m

dS x̂m2D )
k51

K21

xk,mD ,

~18!
05612
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p~xW !5 (
L51

P~L !
L

lE 8
)
l 51

L21

$dx̂W lp̂~ x̂W l !%

3)
m

dS xm2

exp~ f̂ m! )
l 51

L21

~12 x̂l ,m!

(
n

exp~ f̂ n! )
l 51

L21

~12 x̂l ,n!
D .

~19!

From Eqs. ~17! and ~19! we see that the normalization
(m f m51 and(mxm51 are automatically satisfied.

Note that for the two-color problem (p52) one can in-
voke an Ising spin representation for the colors, e.g., by m
ping the color 1 onto spin11 and color 2 onto spin21.
Then, using the fact thatx2512x1, and definingm[1
22x2(P@21,1#), one obtains a single one-variable pro
ability distribution p̃() for the cavitymagnetization~m! of
the vertices~spins!:

p̃~m![pS 11m

2
,
11m

2 D . ~20!

We also note that in the absence of overall color constra
~i.e., f̂ m50), a paramagneticsolution of the saddle poin
equations~18!,~19! always exists:

ppm~xW !5dFxW2S 1

pD1W G ,
p̂pm~ x̂W !5dF x̂W2S D

pK21D 1W G , ~21!

Fe,pm5
1

b F ~Kl2K2l!

l
ln~p!2 ln~pK212D!G ,

Ue,pm5
exp~2b!

~pK212D!
, f m5

1

p
. ~22!

Finally, one should note that the expressions~14!–~19! are
valid for any distribution of the number of edges per vert
P(L), although in this paper we only investigate the ca
whereP(L) is a Poisson distribution.

B. Two-body interactions, no color constraints

We now derive explicit expressions for the special ca
that we analyze in more detail later on: two-body edgesK

52, and no constraint on the overall color frequencies (f̂ m
50,;m). From Eq.~18! we obtain the relation

p̂~ x̂W !5
1

D
pS x̂W

D
D → E 8

dx̂W p̂~ x̂W !g~ x̂W !5E 8
dxWp~xW !g~DxW !,

~23!
0-4
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such that the free energy per edge can be written in term
the p-dimensional probability distributionp(xW ) alone:

Fe5
1

b FG12
2

l
G3G , ~24!

G15E 8
)
k51

2

$dxW kp~xW k!% lnS 12D(
m

)
k51

2

xk,mD , ~25!

G35(
L

P~L !E 8
)
l 51

L

$dxW lp~xW l !% lnS (
m

)
l 51

L

~12Dxl ,m!D .

~26!

The saddle point equation~19! now becomes

p~xW !5 (
L51

P~L !
L

lE 8
)
l 51

L21

$dxW lp~xW l !%

3)
m

dS xm2

)
l 51

L21

~12Dxl ,m!

(
n

)
l 51

L21

~12Dxl ,n!
D . ~27!

Since the main question we want to investigate is the c
orability of the graph, we are specifically interested in t
ground state energy. We therefore take the low tempera
limit ~i.e., b→`), where a finite contribution to the energ
only exists when 12xk,m[«k,m5O„exp(2b)… for the same
color m for both k51,2; i.e., when two connected vertice
are forced to have the same color. Then the integrand of
~16! becomes to leading order,

exp~2b! (
m51

p

)
k51

2

xk,m

S 12D (
m51

p

)
k51

2

xk,mD 5
~12X!

@11DX exp~b!#

.
1

@11exp~b!X#
5O~1!, ~28!

with

X[«1,m1«2,m2«1,m«2,m2 (
nÞm

x1,nx2,n.O„exp~2b!….

~29!

However, the limitb→` is not easily taken analytically fo
the fixed point equation~27!. As we show in Appendix B,
even in this limit, the extremizing distributionp(xW ) is non-
trivial, and we have not found a way to obtain it analytical
We therefore solve Eq.~27! numerically to obtain the equi
librium distribution p(xW ) which is in turn used to obtain
F, U, andS.

The various integrations in the saddle point equations
the resulting physical quantities are obtained by the Mo
Carlo method. The distributionp(xW ) is obtained as the
05612
of

l-

re

q.

d
e

(p-dimensional! histogram of a large population of sizeNP

of p-dimensional points$xW i u i 51, . . . ,Np%. All results pre-
sented in this paper have been obtained usingNP5106. The
fixed point equation~27! can then be solved by randoml
updating~i.e., replacing! one of thexW i→xW i8 . The update of

xW i8 is carried out by, first, randomly picking a valueL with

probability P(L)L/l, then randomly pickingL21 xW i l
’s, and

finally using the right hand sides~RHS! of the arguments of
the d function in Eq.~27! to calculate the resulting compo
nents of xW i8 . This process is repeated until the histogra
reaches a steady state. Once this histogram is obtained, i
be used to calculate the various physical quantities in sim
fashion.

Note that, in order to reach a sufficient numerical pre
sion in the low temperature limit for the components of t
xW i , we save eitherxi ,m if xi ,m<0.5 or « i ,m[12xi ,m if xi ,m
.0.5. This avoids precision loss, e.g., in calculating
2Dxi ,m), when xi ,m is very close to 1. Similar steps ar
taken to keep sufficient numerical precision for the RHS
the saddle point equation~27!.

Furthermore, it should be noted that often a very la
number of iterations is needed~up to 103NP) before the dis-
tribution becomes stationary. This, in combination with t
finite population sizeNP5106, and the inherent randomnes
in the Monte Carlo integrations, puts a limit on the achie
able numerical precision of our results.

IV. RESULTS

We now turn to the results of the numerical evaluation
the RS expressions.

First, it should be noted that the residual entropyS0(l)
per vertex~i.e., the logarithm of the number of colorings o
the ground state! does not vanish for any finitel. For the
two-color problem

S0~l!>
Ndc~l!

Nv
ln~2!>P~ne50,l!ln~2![Sl~l!.0,

~30!

where Ndc(l) is the number of disconnected clusters, a
whereP(ne50,l).0 is the fraction of completely isolate
vertices at given connectivityl. For each of these clusters
one can pick a single representative vertex and give it
different colors; the color of all the other vertices in th
cluster is then uniquely determined when the graph is tw
colorable. In the case of a non-two-colorable cluster, ther
at least one~and possibly more! way of coloring the remain-
ing vertices such that the number of unsatisfied edges in
cluster is minimal.

For thep-color problem

S0~l!> (
k50

p22

P~ne5k,l!ln~p2k![Sl~l!.0, ~31!

where P(ne5k,l).0 is the fraction of vertices connecte
by k edges at given connectivityl. A vertex connected tok
other vertices can at least pick betweenp2k colors ~and
0-5
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FIG. 1. On the left: the ground state energyE0(l) for p52. Up tol51 (d), E0(l)50. The paramagnetic ground state energyE0,pm

is always 0. On the right: the ground state entropyS0(l) ~full line! for p52, compared to its lower boundSl(l) @Eq. ~30!# ~dashed line!,
and the paramagnetic ground state entropySpm(l) ~dotted line!. Up to l51 (s), S0 andSpm coincide.
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more if some of the vertices it is connected to have the sa
color! whether the graph isp-colorable or not. In case th
graph is notp-colorable, there is at least one~and possibly
more! choices of coloring the vertices such that the num
of unsatisfied edges in the graph is minimal.

The ground state energyE0(l) per edge can then be use
as an indicator for the colorability of the graphs. Since
use the saddle point method, there may beO(1/ANv) fluc-
tuations of the internal energy per edge around the sa
point value. IfE0(l)>0, this clearly precludes colorability
while for E0(l)50 the colorability may depend on the fluc
tuations.

Note that in the absence of overall constraints on the c
frequencies, the solutions always exhibit a complete co
symmetry, as expected. In other words, the distributionp(xW )
is symmetric under permutations of the components ofxW ~up
to numerical precision!, and the marginal distribution fo
each of the colors is identical:

p̃m~xm![E
0

1

)
nÞm

p

dxnp~xW ! → p̃m~xm!5p̃~x!, ;m.

~32!
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A. Two-color graphs

For the two-color problem, the results are as follows~see
Figs. 1 and 2!.

For l<1, we find only the paramagnetic solution at a
temperatures and the corresponding ground state en
E0(l)50.

For l.1, from a certain~inverse! temperatureTp(l)
@bp(l)# onwards the paramagnetic solution coexists with
nontrivial solution, which can be identified as the physic
one ~at least in the RS approximation! by the fact that this
solution continues to obey inequality~30! for all values ofl
that we have examined, while the continuation of the pa
magnetic solution violates it. We have a positive ground st
energyE0(l).0, and in perfect agreement with the nume
cal experiments, this predictsPc(l)50 for l.lc51.

The behavior of the ground state energy and entropy
presented in Fig. 1 while the phase diagram and the exp
distribution obtained abovel.1 are presented in Fig. 2.

From Eq.~16!, we see that the internal energy is alwa
positive. Furthermore, the numerical analysis indicates
also the entropy and the specific heatCV[]U/]T
5T]S/]T are always non-negative, and inequality~30! is
phase
FIG. 2. On the left: the phase diagram (l,T), and the transition from the paramagnetic to the nonparamagnetic RS state. The

transition is second order inp(xW ). At zero temperature,E050 for l<1 (3) and E0.0 for l.1 ~from 3 onward!. On the right: the

stationary distributionp̃(x) for p52, l52 (.lc), b515. We note the peaks and nontrivial distribution atx.0 andx.1, indicating that
many vertices are forced~not! to take a specific color. Forl,lc these peaks are absent. We also note the distinct peaks atx;1/2, 1/3, and
other rational values. The symmetry aroundx50.5 is specific forp52.
0-6



RANDOM GRAPH COLORING: STATISTICAL PHYSICS . . . PHYSICAL REVIEW E 66, 056120 ~2002!
FIG. 3. On the left: the ground state energyE0(l) for p53. Up tol.5.1 (d), E050. The paramagnetic ground state energyE0,pm is
always 0. On the right: the ground state entropyS0(l) ~full line! for p53, compared to its lower boundSl(l) ~dashed line!, and the
paramagnetic ground state entropyS0,pm(l) ~dotted line!. Up to l.4 (s), S0 andSp coincide.
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always satisfied. This implies that all quantities behave a
a proper physical system, not giving any direct indicati
that the RS ansatz might be inaccurate.

B. Three-color graphs

For the three-color problem, the results are as follows~see
Figs. 3–5!.

For l&4, we only find the paramagnetic solution at a
temperatures, and the corresponding ground state en
E0(l)50.

For 4&l&5.1, from a certain temperatureTpm(l) on-
ward, the paramagnetic solution coexists with a nontriv
solution, which can be identified as the physical one by co
paring the free energies. The ground state energyE0(l) re-
mains 0.

For 5.1&l, from a certain temperatureTpm(l) onward,
the paramagnetic solution coexists with a nontrivial solut
with a positive ground state energyE0(l).0, which can be
identified as the physical one by the fact that this solut
continues to obey inequality~31! for all values ofl that we
05612
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rgy
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have examined, while the continuation of the paramagn
solution violates it.

The lower limit for colorabilityl.4 as obtained with the
RS ansatz is within the numerical precision of the b
known lower limit to date@14#, which puts it atl54.03. The
upper limit for colorabilityl.5.1 as obtained with the RS
ansatz is slightly weaker than the best known upper limit
date@15#, which puts it atl55.044.

The behavior of the ground state energy and entropy
presented in Fig. 3; explicit distributions obtained for vario
l values are presented in Fig. 4, while the phase diagram
presented in Fig. 5.

As we will see, the numerical experiments predict th
Pc(l)51 for l,lc.4.7, and thatPc(l)50 for l.lc
.4.7. Although the RS analysis results do not contradict
numerical ones, they are unable to identifylc.4.7 as the
critical colorability value. This is reminiscent of the RS r
sults in theK-satisfiability ~-SAT! problem@1#. In our case,
however, from Eq.~16!, we see that the internal energy
always non-negative. In addition, the numerical analy
shows that both entropy and specific heatCV[]U/]T
te the
d

FIG. 4. On the left: the stationary distributionp̃(x) for p53, l54.5 (,lc) ~andl54.8 inset!, b515. Although the solutions clearly
differ from the paramagnetic solution~a single peak atx51/3), the absence of peaks nearx.0,1 indicates thatE0(l)50. On the right: the

stationary distributionp̃(x) for p53, l55.5 (.lc), b515. In the inset we have enlarged and truncated the vertical scale, to illustra
continuous nature of the distribution. We note the peaks and nontrivial distribution atx.0 andx.1, indicating that many vertices are force
~not! to take a specific color, and thatE0(l).0.
0-7
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J. van MOURIK AND D. SAAD PHYSICAL REVIEW E66, 056120 ~2002!
5T]S/]T are always non-negative, and inequality~31! is
always satisfied. This implies that all quantities behave a
a proper physical system, thus giving no direct indicat
that the RS ansatz is wrong.

C. Exact enumerations

To validate the results obtained analytically we carried
extensive computer simulations using two different a
proaches.

The first numerical method we use is an exact enum
tion of all the possible colorings for a given graph. Note th
in general, the number of possible colorings examin
grows exponentially with the system sizeNv , i.e.,
;P(Nv)exp@cNv ln(p21)#, where P(Nv) is some polyno-
mial, and wherec is some constant called theattrition rate;
see, e.g.,@16# and references therein. Hence, forp>3, we
are fairly limited in accessible system sizes@i.e., Nv
.O(102)], and may expect considerable finite size effec

For p52, however, the colorability of a graph can b
determined by the following linear algorithm: We start b
picking a vertex at random, and giving it a certain col

FIG. 5. The phase diagram (l,T). The phase transition from a

paramagnetic distributionp(xW ) to a nonparamagnetic distributio

p(xW ) is second order inp(xW ). From3 onward the RS ground stat
energy is positive.
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Then, the color of all vertices it is connected to~i.e., the
second generation, which is typically a finite number th
depends onl), must have the opposite color, and the edg
involved can be removed. Now one can assign the first co
to all the vertices~the third generation! connected to the
second generation, and the edges involved are again
moved. This process is repeated until either the whole gr
is colored or a contradiction is encountered. Since this p
cess requires only a finite number of operations per edge,
since the number of edges isNe5(l/2)Nv , one can deter-
mine the two-colorability of the graph in linear time, an
large system sizes are accessible. It is important to note
a graph that contains any loop of odd length is not tw
colorable, while any graph that does not contain a loop
odd length is. We will use this observation to obtain an ex
expression for the two-colorability of random graphs in t
next section.

The two-colorability Pc(l) as obtained by exact enu
merations for system sizesNv5102, . . . ,105 and the theo-
retical line ~for Nv→`) are plotted in Fig. 6. We observ
that Pc(l) decreases continuously fromPc(l)51 at l50
to Pc(l)50 for l>1. These results are in full agreeme
with those reported in@11#, although here we have studie
much larger systems. They are also in agreement with
results obtained by the replica method, but the latter is
able to distinguish betweenPc(l)51 and 0,Pc(l),1 as
in both cases the ground state energy is 0.

One should note that this linear algorithm is specific to
graph-coloring problem withp52 and K52. In the case
that p>3 and/orK>3, the colors of the next generation a
not uniquely determined by the colors of the previous o
The same holds for theK-SAT problem~even withK52)
where a clause~i.e., edge! may be satisfied by either of it
arguments or by both.

For p>3 it is believed that no polynomial algorithm ex
ists to determine thep-colorability of a graph, and we hav
to resort to the exploration of the possible colorings by bui
ing up a search tree. Since we limit ourselves to determin
whether a graph is colorable or not, we are able to introd
s from
ct
FIG. 6. Left: the probability that a random graph is two-colorable, for system sizes from 102 to 105 and infinite system size~theory!. The
transition fromPc(l).0 to Pc(l)50 is second order. Right: the probability that a random graph is three-colorable, for system size
75 to 150 and infinite system size~theory!. The transition fromPc(l).0 to Pc(l)50 is first order. The probabilities are obtained by exa
enumerations, averaged over 103 runs.
0-8
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RANDOM GRAPH COLORING: STATISTICAL PHYSICS . . . PHYSICAL REVIEW E 66, 056120 ~2002!
FIG. 7. The ground state energyE0(l) as obtained with MC simulations with simulated annealing forNv5103 ~left! andNv5104 ~right!,
and different cooling rates, averaged over 100 runs. The lower curve is the estimate for infinitely slow cooling as obtained by a q
extrapolation of the values for the three smallest values of 1/C to 1/C50.
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some criteria to reduce the problem, thus avoiding enum
ating the full search tree.

A first step in the reduction ispruning: a vertex that has
more available colors than vertices it is connected to w
always be able to satisfy all edges, irrespective of their c
ors. Therefore, it will not determine the colorability of th
graph, and the vertex and all its edges can be pruned.
pruning is to be done iteratively~as the pruning of one verte
with its edges may render other vertices prunable!, until all
remaining vertices have at least as many edges as avai
colors.

A second step isearly stopping: one starts coloring the
remaining vertices, keeping track of the remaining availa
colors per vertex for all uncolored vertices. One can s
exploring the search tree when a good coloring is fou
Alternatively, when the number of remaining available colo
for a vertex becomes 0, the coloring so far will lead to
contradiction later on, and we can abandon this branch of
search tree altogether. One then backtracks to the p
where a coloring was still possible.

All this greatly reduces the actual number of colorin
that have to be examined, leaving it, however, exponentia
the system size, thus greatly limiting the accessible sys
size. Furthermore, since we stop as soon as we encoun
contradiction, we have no information on the minimum nu
ber of unsatisfied edges~i.e., the ground state energy!, or the
number of colorings that yield the minimum number of u
satisfied edges~i.e., the residual entropy!. In Fig. 6 we ob-
serve that the transition fromP(l)51 to P(l)50 becomes
increasingly sharp with increasing system size, and that
curves cross atl.4.7. This is typical for a first order tran
sition, and puts the critical connectivity for the infinite sy
tem atlc.4.7. In this limit we expectP(l) to go discon-
tinuously from 1 to 0, in accordance with the resu
presented in@11,12#.

D. Monte Carlo simulations

Since exact enumerations forp>3 are limited to rela-
tively small system sizes, we have also performed Mo
Carlo simulations with simulated annealing for thep53
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case. The simulations have been performed for system s
Nv51000 andNv510 000 and consist of the following in
gredients.

At each temperature we perform Monte Carlo dynami

Starting with a configurationcW with energyE(cW ), we change
the color of a randomly chosencj to cj8Þcj , obtaining the

new configurationcW8 with energy E(cW8). Then, if DE

[E(cW8)2E(cW )<0 we always accept the move; otherwi
we accept it with probability exp(2bDE),1.

We then gradually lower the temperature~this is known as
simulated annealing@17#!. If the temperature is reduce
~cooling of the system! logarithmically slowly with increas-
ing system size, one is guaranteed to find the global m
mum cW0 of E(cW ). However, logarithmically slow cooling is
not feasible due to limitations in computing time. Therefo
we must adopt a feasible cooling scheme. Here we h
opted for a linear cooling scheme, where we increaseb by
small steps of fixed lengthdb51024. At each inverse tem-
peratureb we makeCNv Monte Carlo steps, and we contro
the cooling rate by changingC, and try to extrapolate to
1/C→0 in order to obtain a prediction for infinitely slow
cooling. The values ofC that we have considered, areC
50.1,1,10,100. The values of the ground state energy as
tained by linear cooling schemes serve as an upper boun
the true ground state energy.

The simulation results are presented in Fig. 7. We obse
that the results predict thatE0(l) starts deviating signifi-
cantly from 0 aroundl.4.6–4.7, in agreement with the ex
act enumeration and earlier numerical results@12#. The very
similar values that we obtain for the ground state energie
obtained by the simulations for bothNv5103 and Nv5104

indicate that the finite size effects for these sizes of syste
if noticeable, fall well within the limitations of the achiev
able numerical precision due to the linear cooling schem
The results show thatE0(l) as predicted by the RS approx
mation is no longer in agreement with the numerical e
dence, thus giving an indirect indication that one may ha
to consider a more complicated ansatz for the replica s
metries. A similar underestimation of the ground state ene
in the RS approximation has been observed in theK-SAT
0-9
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J. van MOURIK AND D. SAAD PHYSICAL REVIEW E66, 056120 ~2002!
problem@1#. In that model, however, the inconsistency of t
RS result was signaled by an~unphysical! negative ground
state energy. This problem was partially solved by consid
ing a more complicated ansatz for the replica symmetry~i.e.,
a one-step replica symmetry breaking ansatz, 1RSB!. It is
therefore plausible that such a 1RSB calculation would a
improve on the prediction of the valuelc at which the
ground state energy ceases to be 0~i.e., move it closer to the
true valuelc.4.7). Such a calculation~and also subsequen
steps in Parisi’s scheme for RSB! is easy to formulate, but its
evaluation is numerically rather involved. This analysis
beyond the scope of the current paper, but will be the sub
of a forthcoming study@21#.

V. TWO-COLOR PROBLEM: EXACT ANALYSIS

We will now derive an exact expression for the tw
colorability of random graphs, in the infinite graph size lim
for lP@0,1#. As we have seen, the replica analysis correc
finds E0(l)50, but is unable to predict the nontrivial be
havior of Pc(l) as observed in the exact enumerations.
do this by identifying local configurations that give rise
noncolorable clusters, and by calculating the probabilities
their occurrence. One should notice that the noncolora
local configurations are loops of odd length~see Fig. 8!. We
start from the probability distribution for the number
edges of a given vertexP(L),L50, . . . ,̀ , which is a Pois-
son distribution. We recall from Eq.~2! that the probabilities
of a or no two-edge between two given vertices are given

Pe5
l

Npe/v
5

l

Nv
, Pne512Pe.12

l

Nv
. ~33!

The probability of no~denoted by the symbol¬) odd loops
in the graph is given by

P~¬3,¬5,¬7,¬9, . . . !

5P~¬3!P~¬5u¬3!P~¬7u¬3,¬5!

3P~¬9u¬3,¬5,¬7! . . . . ~34!

We first evaluate the probability that three randomly cho
vertices form a loop of length 3. We randomly pick thr
vertices, which can be done in (3

Nv ) ways. The probability
that for a given set of three vertices each is connected w
the other two is given by

P~3!5P e
35

l3

Nv
3

. ~35!

FIG. 8. Loops of odd lengths 3,5,7, . . . , all of which have a
finite probability of occurring in large randomly generated grap
for any finitel.
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As long as the typical loop size is finite~compared toNv),
the correlations between the different (2k11)-tuples is
O(Nv

22) ~at least two new edges have to be present!, and are
therefore negligible. Hence, the probability that there are
three-loops in the graph is given by

P~¬3!5@12P~3!# S Nv
3 D.expS 2

l3

233D . ~36!

Now we turn to the probability that there are no five-loop
given that there are no three-loops. We can randomly p
five vertices in (5

Nv ) ways. The probability that a given set o
five vertices forms a loop~counting all the distinct possible
orderings 4!/2), while there are no shorter~three-!loops in
the group~five internal edges have to be excluded!, is given
by

P~5u¬3!5
4!

2
P e

5P ne
5 .

4!

2
P e

55P~5!. ~37!

Therefore, the probability that there are no five-loops in
graph is given by

P~¬5!5@12P~5!# S Nv
5 D.expS 2

l5

235D . ~38!

We can repeat this procedure for any odd loop lengthk
11, k51,2,3 . . . . The number of internal edges to exclu
is given by (2k11)(2k12)/2, while the number of distinc
orderings of the vertices in a closed loop is given by (k
11)!/@2(2k11)#. Hence, we obtain

P~¬2k11u¬3, . . . ,¬2k21!

.P~¬2k11!

.expS 2
l2k11

2~2k11! D . ~39!

The probability of no odd loops of any length~i.e. the prob-
ability that the graph is colorable! is therefore

Pc.)
k51

`

P~¬2k11!.expS 2
1

2 (
k51

`
l2k11

2k11D
5expS 2

1

2
@arctanh~l!2l# D5S 12l

11l D 1/4

expS l

2D .

~40!

After completing this work, we found that a similar~more
general! expression had already been obtained@18# in the

s

0-10
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RANDOM GRAPH COLORING: STATISTICAL PHYSICS . . . PHYSICAL REVIEW E 66, 056120 ~2002!
context of random satisfiability problems. From Fig. 6, w
see that this result is in perfect agreement with that obtai
by exact enumeration up to the point where the typical o
loop length becomes of the order of the square root of
system size. This point moves to the right~and approaches
l51, the percolation threshold for this type of graph@19#!
with increasing system size. Furthermore, since for 0<l
,1 the probability to have an odd loop isP(odd),1, the
ground state energyE0 per edge is then typically 0, as th
probability to have a finiteE0 is exponentially small inNv :

P~U5E0.0!.@P~odd!#NvE0;0. ~41!

This observation is in perfect agreement with our resu
from the Monte Carlo simulations~see Fig. 7!, and is also
confirmed by our replica analysis.

Unfortunately, for p>3 the basic local configuration
~i.e., those including a finite number of vertices! that lead to
noncolorability cannot be enumerated so easily. Furtherm
each of the basic noncolorable local configurations ha
vanishingly small occurrence probability~Fig. 9!. It is their
collective probability ~including very large configuration
that may consist of a finite fraction of the graph! that sud-
denly becomes 1 at the criticall, giving rise to the observed
first order transition from colorable to noncolorable graphs
similar fact in the context of random satisfiability problem
was already noted in@18#.

VI. CONCLUSIONS

We analyzed the colorability of random graphs for fin
average connectivity, an important NP-complete proble
The statistical physics based analysis provides typical res
in the infinite system size limit, complementing results pu
lished in the computational complexity literature.

The results obtained are in qualitative agreement w
those reported in the literature as well as with numeri
results we obtained from exact enumeration and Monte C
based solutions.

One apparent discrepancy, in the case of two-co
graphs, has been investigated using a probabilistic ana
that provided exact results for the probability of colorab
random graphs in the case of two colors. The analysis
explains the failure of the statistical physics based analys
detect uncolorability when this comes as a result of onl
finite number of unsatisfiable edges, since such an ana
can identify only an extensive number of such edges.

The current analysis is the first step in the investigation

FIG. 9. The smallest elementary noncolorable configurati
~complete graphs or cliques! for p53 ~left!, p54 ~right!, both of
which have a vanishingly small occurrence probability in large r
domly generated graphs for any finitel.
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graph colorability. Future studies include~a! refining the cur-
rent analysis by extending it to the case of one-step RSB;~b!
investigating graphs with mixed two- and three-color ver
ces; this case has been studied numerically in@11# but is
difficult to analyze due to the different nature of the tw
analyses; and~c! studying the properties of random grap
with various restrictions. These research activities are c
rently under way.
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APPENDIX A: TECHNICAL DETAILS OF THE REPLICA
CALCULATION

We now present the technical details of the replica cal
lation. We calculate the average of thenth power of the
partition sum:

Z n~ fW ,D![ )
a51

n FTr
cWa

expS 2b(̂
&K

D^&K
x^&K

a ~cW ! D
3)

m
dS (

j 51

N

mc
j
a2N fmD G . ~A1!

The constraints on thef m are enforced by the introduction o
the Lagrange multipliersf̂ m

a , such that the average of th
replicated partition sum becomes

^Z n&5E )
a51

n

)
m51

p H d f̂m
a

2p i exp~2N fm f̂ m
a !J

3 )
a51

n H Tr
cWa

expS (
m51

p

(
j 51

Nv

f̂ m
a mc

j
aD J

3K )
a51

n

expS 2b(̂
&K

D^&K
x^&K

~cWa! D L
D

. ~A2!

The average over all tensorsD with K ~taken to be two for
now! nonzero elements per row andL j per columnj is given
by Eq. ~10!, where the Kronecker delta functions can
expressed asd(x,y)5r(dZ/2p i )Z(x2y21). We now proceed
with the calculation ofT:

s

-
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T5TrD R )
j 151

Nv H dZj 1

2p i
Z

j 1

((^ j 2 , . . . ,j K&D^&K
2L j 1

21)J )̂
&K

)
a51

n

exp@2bD^&K
x^&K

~cWa!#

5 R )
j 51

Nv H dZj

2p i
Zj

2(L j 11)J )̂
&K

H TrD^&K
@Z#

^&K

D^&K )
a51

n

exp@2bD^&K
x^&K

~cWa!#J
5 R )

j 51

Nv H dZj

2p i
Zj

2(L j 11)J expS (̂
&K

lnF11@Z#^&K )a51

n

exp@2bx^&K
~cWa!#G D

. R )
j 51

Nv H dZj

2p i
Zj

2(L j 11)J expS (̂
&K

@Z#^&K )a51

n

exp@2bx^&K
~cWa!# D ~A3!

5 R )
j 51

N H dZj

2p i
Zj

2(L j 11)J expS (̂
&K

@Z#^&K )a51

n F12 (
m51

p

D@mc
j
a#^&KG D

5 R )
j 51

N H dZj

2p i
Zj

2(L j 11)J expS (
m50

n

~2D!m(
^a&m

(
$m%m

(̂
&K

@Z@mcj
#$m%m

^a&m #^&KD , ~A4!

where we have used the shorthand notation~12!. Step~A3! is justified, because after integration over theZj only those terms
in the expansion of the exponential in which eachZj occurs exactlyL times will survive, and it was shown@20# that in the
thermodynamic limit (Nv→`) in the expansion of the logarithm all higher order terms are negligible compared to the
order term. In step~A4!, we have made the choice~7! for x^&K

a .

We have that(^&K
@x#^&K

.(( j 51
Nv xj )

K/K!, in the thermodynamic limit, such that

T. R )
j 51

Nv H dZj

2p i
Zj

2(L j 11)J expS 1

K!
(

m50

n

~2D!m(
^a&m

(
$m%m

F (
j 50

Nv

Zj@mcj
#$m%m

^a&mGKD . ~A5!

In order to factorize the whole expression in thej ’s, we introduce the order parameters

q$m%m

^a&m[(
j 50

N

Zj@mcj
#$m%m

^a&m , ~A6!

by the introduction of the corresponding Lagrange multipliersq̂$m%m

^a&m :

T5E )
m50

n

)
^a&m

)
$m%m

H dq̂$m%m

^a&mdq$m%m

^a&m

2p i
expS 2q̂$m%m

^a&mq$m%m

^a&m1~2D!m
~q$m%m

^a&m !K

K!
D J )

j 51

Nv

Xj , ~A7!

where

Xj5 R dZj

2p i
Zj

2(L j 11) expS Zj (
m50

n

(
^a&m

(
$m%m

q̂$m%m

^a&m@mcj
#$m%m

^a&m D 5
1

L j !
S (

m50

n

(
^a&m

(
$m%m

q̂$m%m

^a&m@mcj
#$m%m

^a&m D L j

. ~A8!

Following similar steps we obtain for the denominator

N.E H dq̂0dq0

2p i J expF2q̂0q01
q0

K

K!
1N(

L
P~L !lnS q̂0

L

L!
D G . ~A9!
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The average of the replicated partition function hence reads

^Z n&5
1

N
E )

a51

n

)
m51

p H d f̂m
a

2p i
exp~2N f̂m

a f m!J
3 )

m50

n

)
^a&m

)
$m%m

H dq̂$m%m

^a&mdq$m%m

^a&m

2p i
expS 2q̂$m%m

^a&mq$m%m

^a&m1~2D!m
~q$m%m

^a&m !K

K!
D J

3)
j 51

Nv

)
a51

n

Trc
j
a expS (

m
f̂ m

a mc
j
aD H 1

L j !
S (

m50

n

(
^a&m

(
$m%m

q̂$m%m

^a&m@mcj
#$m%m

^a&m D L jJ , ~A10!

which can be evaluated using the saddle point method for the integration variablesf̂ m
a , q̂$m%m

^a&m , andq$m%m

^a&m . In order to proceed

with the calculation, we must make an assumption about the symmetry between replicas, and we use the replica s
ansatz~13! for the terms in Eq.~A10! that involve the order parameters:

(
m50

n

(
^a&m

(
$m%m

q̂$m%m

^a&mq$m%m

^a&m5q0q̂0E 8
$dxWdx̂Wp~xW !p̂~ x̂W !% (

m50

n

(
^a&m

(
$m%m

)
m

~2xmx̂m!mm

5q0q̂0E 8
$dxWdx̂Wp~xW !p̂~ x̂W !% (

m50

n S n

m
D (

mW
S m

mW
D)

m
~2xmx̂m!mm

5q0q̂0E 8
$dxWdx̂Wp~xW !p̂~ x̂W !% (

m50

n S n

m
D S 2(

m
xmx̂mD m

5q0q̂0E 8
$dxWdx̂Wp~xW !p̂~ x̂W !%S 12(

m
xmx̂mD n

, ~A11!

(
m50

n

~2D!m(
^a&m

(
$m%m

~q$m%m

^a&m !K

K!
5•••5

q0
K

K!
E 8

)
k51

K

$dxW kpk~xW k!%S 12D(
m

)
k51

K

xk,mD n

, ~A12!

(
m50

n

(
^a&m

(
$m%m

q̂$m%m

^a&m@mcj
#$m%m

^a&m5q̂0E 8
$dx̂W p̂~ x̂W !% (

m50

n

(
^a&m

(
$m%m

)
m51

p

~2 x̂m!mm )
,51

m

m,c
j

a,

5q̂0E 8
$dx̂W p̂~ x̂W !% (

m50

n

(
^a&m

S (
$m%m

)
,51

m

~2m,c
j

a,x̂m,
!D

5q̂0E 8
$dx̂W p̂~ x̂W !% (

m50

n

(
^a&m

F )
,51

m S 2(
m

m,c
j

a,x̂mD G
5•••5q̂0E 8

$dx̂W p̂~ x̂W !%)
a51

n S 12(
m

mc
j
ax̂mD , ~A13!

where (mW
m )([m!/ )mmm!) are multi(p)-nomial and (m

n )@[n!/m!(n2m)! # binomial coefficients. Hence, we have
056120-13
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)
a51

n H Trc
j
a expS (

m
f̂ mmcaD J 1

L j !
~••• !L j

5
q̂0

L j

L j !
E 8

)
l 51

L j

$dx̂W lp̂ l~ x̂W l ,m!%)
a51

n FTrc
j
a expS (

m51

p

f̂ mmcaD
3)

l 51

L j S 12(
m

mcax̂l ,mD G
5

q̂0
L j

L j !
E 8

)
l 51

L j

$dx̂W lp̂ l~ x̂W l ,m!%S (
m51

p

exp~ f̂ m!)
l 51

L j

3~12 x̂l ,m!D n

, ~A14!

to obtain the following expression for the averaged rep
cated partition sum:

^Z n&5
1

N ext$ f̂W ,q̂,q,p̂,p%expH 2nNv (
m51

p

f m f̂ m2q0q̂0I1

1
q0

K

K!
I21Nv(

L
P~L !F lnS q̂0

L

L!
D 1 ln~I3L!G J ,

~A15!

where

I1[E 8
$dxWdx̂Wp~xW !p̂~ x̂W !%S 12(

m
xmx̂mD n

,

I2[E 8
)
k51

K

$dxW kpk~xW k!%S 12D(
m

)
k51

K

xk,mD n

,

I3L[E 8
)
l 51

L

$dx̂W lp̂ l~ x̂W l !%S (
m51

p

exp~ f̂ m!)
l 51

L

~12 x̂l ,m!D n

.

~A16!

We now solve the saddle point equations with respect toq̂0

andq0, and note that the structure of the (q̂0 ,q0)-dependent
part of the denominator is exactly the same withI15I2
51, to obtain

H q05S Nvl~K21!! u
I2

D 1/K

q̂05
Nvl

I1
S I2

Nvl~K21!! D
1/K → H q0q̂05

Nvl

I1

q0
K

K!
5

Nvl

KI2

,

~A17!

wherel5(LP(L)L, such that all terms not depending o
the Ii or f m in the numerator and denominator cancel:
05612
-

^Z n&.expFNvS 2n (
m51

p

f m f̂ m2l ln~I1!1
l

K
ln~I2!

1(
L

P~L !ln~I3L!D G , ~A18!

taken in the extremum for$ f̂W ,p̂,p%. So far we have per-
formed all calculations for general positive integern. Taking
limn→0@(Z n21)/n#, and multiplying the result byK/Nvl,
we obtain the replica symmetric free energy per edge~14!.

APPENDIX B: LOW TEMPERATURE LIMIT

We will now show that even in the limitb→` the distri-
butionp(xW ) remains nontrivial. In order to demonstrate th
we concentrate on the fixed point equation~27!. Using two
explicit examples, we show how contributions top() for
extremal values of the arguments@i.e., 12xm[«m5O„exp
(2b), xn5O„exp(2b)…unÞm] may generate contribution
to p( ) with finite argument values @i.e., 12xm
5O(1),;m], and vice versa.

~1! First, we assume that there is a finite probability de
sity p(xW ) that 12xm[«m5O„exp(2b)…, such that xn

5O„exp(2b)…unÞm. Suppose now thatp53, and consider
the term in Eq~27! with L2153. The following combina-
tion of xW ,’s (,51,2,3) then has a finite probability density

12x1,1[«1,1, 12x2,2[«2,2, 12x3,3[«3,3,

« i ,i5O„exp~2b!… x,,n5O~exp~2b!…, nÞm,
~B1!

and, to leading order, generates a contribution to the LHS
Eq. ~27! with xW :

12xm.12
exp~2b!1«m,m

(
n

@exp~2b!1«n,n#

5O~1!,

m51,2,3, ~B2!

i.e., with finite argument values.
~2! Second, we assume that there is a finite probabi

densityp(xW ) that 12xm[«!1, such thatxn5O(«)unÞm.
Suppose now thatp52, and consider the term in Eq.~27!

with L2153. The following combination ofxW ,’s (,
51,2,3) has then a finite probability density:

12x1,1[«1,1, 12x2,1[«2,1, «1/2,15O~«!,

x3,n5O~1!, n51,2 ~B3!

and, to leading order, generates a contribution to the LHS
Eq. ~27! with xW :

x1.
«1,1«2,1

«1,1«2,1112x3,2
5O~«2!, ~B4!
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12x2.12
12x3,2

«1,1«2,1112x3,2
5O~«2!,

i.e., with more extreme values of the arguments@O(«2) in-
stead ofO(«)].

Hence, we have shown that extreme values will gene
less extreme values and vice versa. Since the RHS of
~27! contains terms with all values ofL, obviously~even in
R.

.

a

05612
te
q.

the limit b→`) we cannot explicitly keep track of the pro
liferation of distributions to different values ofxW , and have to
resort to a numerical analysis. For each value ofl, we have
to check whether in the limitb→` a finite probability den-
sity p(xW ) is generated for extremal values ofxW @i.e., 12xm
5O„exp(2b)…]. If this is the case, the internal energyU will
be positive, and the probability that the graph is colora
must be 0.
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